Characterization of a novel cold-adapted phosphinothricin N-acetyltransferase from the marine bacterium Rhodococcus sp. strain YM12

2014 ◽  
Vol 104 ◽  
pp. 23-28 ◽  
Author(s):  
Gaobing Wu ◽  
Mingru Yuan ◽  
Lu Wei ◽  
Yi Zhang ◽  
Yongjun Lin ◽  
...  
2018 ◽  
Vol 56 (9) ◽  
pp. 656-664 ◽  
Author(s):  
Jingjing Sun ◽  
Wei Wang ◽  
Congyu Yao ◽  
Fangqun Dai ◽  
Xiangjie Zhu ◽  
...  

2021 ◽  
Author(s):  
Natael M. Wayllace ◽  
Nicolas Hedín ◽  
María V. Busi ◽  
Diego F. Gomez-Casati

ABSTRACTWe investigated the structural and functional properties of SdGA, a glucoamylase (GA) from Saccharophagus degradans, a marine bacterium which degrades different complex polysaccharides at high rate. SdGA is composed mainly by a N-terminal GH15_N domain linked to a C-terminal catalytic domain (CD) found in the GH15 family of glycosylhydrolases with an overall structure similar to other bacterial GAs. The protein was expressed in Escherichia coli cells, purified and its biochemical properties were investigated. Although SdGA has a maximum activity at 39°C and pH 6.0, it also shows high activity in a wide range, from low to mild temperatures, like cold-adapted enzymes. Furthermore, SdGA has a higher content of flexible residues and a larger CD due to various amino acid insertions compared to other thermostable GAs. We propose that this novel SdGA, is a cold-adapted enzyme that might be suitable for use in different industrial processes that require enzymes which act at low or medium temperatures.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3915 ◽  
Author(s):  
Yue Yang ◽  
Zhou Zheng ◽  
Yifei Xiao ◽  
Jiaojiao Zhang ◽  
Yu Zhou ◽  
...  

Chitosanase plays an important role in the production of chitooligosaccharides (CHOS), which possess various biological activities. Herein, a glycoside hydrolase (GH) family 46 chitosanase-encoding gene, csnB, was cloned from marine bacterium Bacillus sp. BY01 and heterologously expressed in Escherichia coli. The recombinant chitosanase, CsnB, was optimally active at 35 °C and pH 5.0. It was also revealed to be a cold-adapted enzyme, maintaining 39.5% and 40.4% of its maximum activity at 0 and 10 °C, respectively. Meanwhile, CsnB showed wide pH-stability within the range of pH 3.0 to 7.0. Then, an improved reaction condition was built to enhance its thermostability with a final glycerol volume concentration of 20%. Moreover, CsnB was determined to be an endo-type chitosanase, yielding chitosan disaccharides and trisaccharides as the main products. Overall, CsnB provides a new choice for enzymatic CHOS production.


Molecules ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 183 ◽  
Author(s):  
Yu Zhou ◽  
Xuehong Chen ◽  
Xiao Li ◽  
Yantao Han ◽  
Yanan Wang ◽  
...  

Chitosanases play an important role in chitosan degradation, forming enzymatic degradation products with several biological activities. Although many chitosanases have been discovered and studied, the enzymes with special characteristics are still rather rare. In this study, a new chitosanase, CsnM, with an apparent molecular weight of 28 kDa was purified from the marine bacterium Pseudoalteromonas sp. SY39. CsnM is a cold-adapted enzyme, which shows highest activity at 40 °C and exhibits 30.6% and 49.4% of its maximal activity at 10 and 15 °C, respectively. CsnM is also a thermo-tolerant enzyme that recovers 95.2%, 89.1% and 88.1% of its initial activity after boiling for 5, 10 and 20 min, respectively. Additionally, CsnM is an endo-type chitosanase that yields chitodisaccharide as the main product (69.9% of the total product). It’s cold-adaptation, thermo-tolerance and high chitodisaccharide yield make CsnM a superior candidate for biotechnological application to produce chitooligosaccharides.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 596
Author(s):  
Lin-Lin Zhang ◽  
Xiao-Hua Jiang ◽  
Xin-Feng Xiao ◽  
Wen-Xiu Zhang ◽  
Yi-Qian Shi ◽  
...  

(1) Background: Chitooligosaccharides (COS) have numerous applications due to their excellent properties. Chitosan hydrolysis using chitosanases has been proposed as an advisable method for COS preparation. Although many chitosanases from various sources have been identified, the cold-adapted ones with high stability are still rather rare but required. (2) Methods: A novel chitosanase named CsnY from marine bacterium Renibacterium sp. Y82 was expressed in Escherichia coli, following sequence analysis. Then, the characterizations of recombinant CsnY purified through Ni–NTA affinity chromatography were conducted, including effects of pH and temperature, effects of metal ions and chemicals, and final product analysis. (3) Results: The GH46 family chitosanase CsnY possessed promising thermostability at broad temperature range (0–50 °C), and with optimal activity at 40 °C and pH 6.0, especially showing relatively high activity (over 80% of its maximum activity) at low temperatures (20–30 °C), which demonstrated the cold-adapted property. Common metal ions or chemicals had no obvious effect on CsnY except Mn2+ and Co2+. Finally, CsnY was determined to be an endo-type chitosanase generating chitodisaccharides and -trisaccharides as main products, whose total concentration reached 56.74 mM within 2 h against 2% (w/v) initial chitosan substrate. (4) Conclusions: The results suggest the cold-adapted CsnY with favorable stability has desirable potential for the industrial production of COS.


Sign in / Sign up

Export Citation Format

Share Document