alginate lyase
Recently Published Documents


TOTAL DOCUMENTS

377
(FIVE YEARS 98)

H-INDEX

42
(FIVE YEARS 8)

Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 66
Author(s):  
Mingpeng Wang ◽  
Lei Chen ◽  
Zhengyu Lou ◽  
Xueting Yuan ◽  
Guiping Pan ◽  
...  

As a low molecular weight alginate, alginate oligosaccharides (AOS) exhibit improved water solubility, better bioavailability, and comprehensive health benefits. In addition, their biocompatibility, biodegradability, non-toxicity, non-immunogenicity, and gelling capability make them an excellent biomaterial with a dual curative effect when applied in a drug delivery system. In this paper, a novel alginate lyase, Algpt, was cloned and characterized from a marine bacterium, Paenibacillus sp. LJ-23. The purified enzyme was composed of 387 amino acid residues, and had a molecular weight of 42.8 kDa. The optimal pH of Algpt was 7.0 and the optimal temperature was 45 °C. The analysis of the conserved domain and the prediction of the three-dimensional structure indicated that Algpt was a novel alginate lyase. The dominant degradation products of Algpt on alginate were AOS dimer to octamer, depending on the incubation time, which demonstrated that Algpt degraded alginate in an endolytic manner. In addition, Algpt was a salt-independent and thermo-tolerant alginate lyase. Its high stability and wide adaptability endow Algpt with great application potential for the efficient preparation of AOS with different sizes and AOS-based products.


2022 ◽  
Vol 12 ◽  
Author(s):  
Luyao Tang ◽  
Enwen Guo ◽  
Lan Zhang ◽  
Ying Wang ◽  
Shan Gao ◽  
...  

Carbohydrate-binding modules (CBMs), as an important auxiliary module, play a key role in degrading soluble alginate by alginate lyase, but the function on alginate gel has not been elucidated. Recently, we reported alginate lyase VxAly7B containing a CBM32 and a polysaccharide lyase family 7 (PL7). To investigate the specific function of CBM32, we characterized the full-length alginate lyase VxAly7B (VxAly7B-FL) and truncated mutants VxAly7B-CM (PL7) and VxAly7B-CBM (CBM32). Both VxAly7B-FL and native VxAly7B can spontaneously cleavage between CBM32 and PL7. The substrate-binding capacity and activity of VxAly7B-CM to soluble alginate were 0.86- and 1.97-fold those of VxAly7B-FL, respectively. Moreover, CBM32 could accelerate the expansion and cleavage of alginate gel beads, and the degradation rate of VxAly7B-FL to alginate gel beads was threefold that of VxAly7B-CM. Results showed that CBM32 is not conducive to the degradation of soluble alginate by VxAly7B but is helpful for binding and degradation of insoluble alginate gel. This study provides new insights into the function of CBM32 on alginate gel, which may inspire the application strategy of CBMs in insoluble substrates.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 338
Author(s):  
Shigeyuki Kawai ◽  
Wataru Hashimoto

4-Deoxy-l-erythro-5-hexoseulose uronate (DEH), DEH reductase, and alginate lyase have key roles in the metabolism of alginate, a promising carbon source in brown macroalgae for biorefinery. In contrast to the widely reviewed alginate lyase, DEH and DEH reductase have not been previously reviewed. Here, we summarize the current understanding of DEH and DEH reductase, with emphasis on (i) the non-enzymatic and enzymatic formation and structure of DEH and its reactivity to specific amino groups, (ii) the molecular identification, classification, function, and structure, as well as the structural determinants for coenzyme specificity of DEH reductase, and (iii) the significance of DEH for biorefinery. Improved understanding of this and related fields should lead to the practical utilization of alginate for biorefinery.


Author(s):  
Margrethe Gaardløs ◽  
Tonje Marita Bjerkan Heggeset ◽  
Anne Tøndervik ◽  
David Tezé ◽  
Birte Svensson ◽  
...  

The structure and functional properties of alginates are dictated by the monomer composition and molecular weight distribution. Mannuronan C-5 epimerases determine the monomer composition by catalysing the epimerization of β- d -mannuronic acid residues (M) into α- l -guluronic acid residues (G). The molecular weight is affected by alginate lyases, which catalyse a β-elimination mechanism that cleaves alginate chains. The reaction mechanisms for the epimerization and lyase reactions are similar and some enzymes can perform both reactions. These dualistic enzymes share high sequence identity with mannuronan C-5 epimerases without lyase activity. The mechanism behind their activity and the amino acid residues responsible for it are still unknown. We investigate mechanistic determinants involved in the bifunctional epimerase and lyase activity of AlgE7 from Azotobacter vinelandii . Based on sequence analyses, a range of AlgE7 variants were constructed and subjected to activity assays and product characterization by NMR. Our results show that calcium promotes lyase activity whereas NaCl reduces the lyase activity of AlgE7. By using defined poly-M and poly-MG substrates, the preferred cleavage sites of AlgE7 were found to be M|XM and G|XM, where X can be either M or G. From the study of AlgE7 mutants, R148 was identified as an important residue for the lyase activity, and the point mutant R148G resulted in an enzyme with only epimerase activity. Based on the results obtained in the present study we suggest a unified catalytic reaction mechanism for both epimerase and lyase activity where H154 functions as the catalytic base and Y149 as the catalytic acid. Importance Post-harvest valorisation and upgrading of algal constituents is a promising strategy in the development of a sustainable bioeconomy based on algal biomass. In this respect, alginate epimerases and lyases are valuable enzymes for tailoring of the functional properties of alginate, a polysaccharide extracted from brown seaweed with numerous applications in food, medicine, and material industries. By providing a better understanding of the catalytic mechanism and of how the two enzyme actions can be altered by changes in reaction conditions, this study opens for further applications of bacterial epimerases and lyases in enzymatic tailoring of alginate polymers.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 628
Author(s):  
Shu-Kun Gao ◽  
Rui Yin ◽  
Xiao-Chen Wang ◽  
Hui-Ning Jiang ◽  
Xiao-Xiao Liu ◽  
...  

Alginate, the most abundant polysaccharides of brown algae, consists of various proportions of uronic acid epimers α-L-guluronic acid (G) and β-D-mannuronic acid (M). Alginate oligosaccharides (AOs), the degradation products of alginates, exhibit excellent bioactivities and a great potential for broad applications in pharmaceutical fields. Alginate lyases can degrade alginate to functional AOs with unsaturated bonds or monosaccharides, which can facilitate the biorefinery of brown algae. On account of the increasing applications of AOs and biorefinery of brown algae, there is a scientific need to explore the important aspects of alginate lyase, such as catalytic mechanism, structure, and property. This review covers fundamental aspects and recent developments in basic information, structural characteristics, the structure–substrate specificity or catalytic efficiency relationship, property, molecular modification, and applications. To meet the needs of biorefinery systems of a broad array of biochemical products, alginate lyases with special properties, such as salt-activated, wide pH adaptation range, and cold adaptation are outlined. Withal, various challenges in alginate lyase research are traced out, and future directions, specifically on the molecular biology part of alginate lyases, are delineated to further widen the horizon of these exceptional alginate lyases.


2021 ◽  
Vol 151 ◽  
pp. 109916
Author(s):  
Bingmei Su ◽  
Dongyan Wu ◽  
Xinqi Xu ◽  
Lian Xu ◽  
Lichao Wang ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
Author(s):  
RETNO MURWANI ◽  
MADA TRIANDALA SIBERO ◽  
POLA RISDA ASWITA SILITONGA ◽  
AMBARIYANTO AMBARIYANTO

Abstract. Murwani R, Sibero MT, Silitonga PRA, Ambariyanto A. 2021. Bioprospecting of cow's ruminal microbiota from a slaughterhouse in Ambarawa, Central Java, Indonesia. Biodiversitas 22: 5030-5038. Ruminal microorganisms play essential roles in maintaining ruminant health. However, most studies focused only on ruminal lactic acid bacteria (LAB), although other ruminal microorganisms might have biological properties for biotechnological purposes. Therefore, the current study aimed to isolate ruminal bacteria (LAB and non-LAB) and fungi from ruminal material and conducted a bioprospecting study to understand their ability to produce antibacterial compounds and polysaccharide-degrading enzymes. The ruminal bacteria were isolated on MRS and ISP4 agar, while PDA was used to isolate the different fungi. The antibacterial property was tested against multidrug-resistant Escherichia coli and Salmonella enterica ser. Typhi. The ability to produce agarase, alginate-lyase, and carrageenase was screened. Prospective isolates were identified using DNA barcoding approach. Twelve bacteria were isolated using MRS agar, six from ISP4 agar, and four fungi from PDA. Among twelve bacteria from MRS agar, eleven were considered LAB, which consisted of Lactobacillus plantarum and Pediococcus acidilactici. Several classes of bacteria such as actinobacteria, firmicutes, ?-proteobacteria, and ?-proteobacteria were isolated during this study. In addition, three fungal classes, namely Saccharomycetes, Eurotiomycetes, and Mucoromycetes were also isolated. All bacteria from MRS agar were suggested to have potential compounds with antimicrobial activity, while all ruminal fungi exhibited potential sources of polysaccharide-degrading enzymes.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoqian Gu ◽  
Liping Fu ◽  
Aihong Pan ◽  
Yuanyuan Gui ◽  
Qian Zhang ◽  
...  

AbstractUncultured microbes are an important resource for the discovery of novel enzymes. In this study, an amylase gene (amy2587) that codes a protein with 587 amino acids (Amy2587) was obtained from the metagenomic library of macroalgae-associated bacteria. Recombinant Amy2587 was expressed in Escherichia coli BL21 (DE3) and was found to simultaneously possess α-amylase, agarase, carrageenase, cellulase, and alginate lyase activities. Moreover, recombinant Amy2587 showed high thermostability and alkali resistance which are important characteristics for industrial application. To investigate the multifunctional mechanism of Amy2587, three motifs (functional domains) in the Amy2587 sequence were deleted to generate three truncated Amy2587 variants. The results showed that, even though these functional domains affected the multiple substrates degrading activity of Amy2587, they did not wholly explain its multifunctional characteristics. To apply the multifunctional activity of Amy2587, three seaweed substrates (Grateloupia filicina, Chondrus ocellatus, and Scagassum) were digested using Amy2587. After 2 h, 6 h, and 24 h of digestion, 121.2 ± 4 µg/ml, 134.8 ± 6 µg/ml, and 70.3 ± 3.5 µg/ml of reducing sugars were released, respectively. These results show that Amy2587 directly and effectively degraded three kinds of raw seaweeds. This finding provides a theoretical basis for one-step enzymatic digestion of raw seaweeds to obtain seaweed oligosaccharides.


Author(s):  
Lei Shi ◽  
Kunlian Mo ◽  
Shixiang Bao ◽  
Qingjuan Wu ◽  
Chunmei Xue ◽  
...  

A Gram-stain-negative, non-motile, ellipsoid bacterium, designated HB182678T, was isolated from brown alga collected from Hainan province, PR China. Growth was observed at 10–50 °C (optimum 37–40 °C), at pH 6–10 (optimum pH 8) and in the presence of 0.5–13% (w/v) NaCl (optimum, 2–4%). The predominant isoprenoid quinone was Q-10 and the major fatty acids were C18 : 1 ω7c, C16 : 0, C18 : 0 and C19 : 0 cyclo ω8c. The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, an unidentified phospholipid, two unidentified glycolipids and three unidentified aminophospholipids. The size of the draft genome was 4.40 Mbp with G+C content 68.8 mol%. Phylogenetic analysis of 16S rRNA gene sequence indicated that strain HB182678T belonged to the genus Mangrovicoccus , and the closest phylogenetically related species was Mangrovicoccus ximenensis T1lg56T (with the similarity of 96.3%). Whole genome average nucleotide identity (ANI) value between them was 84.3% and in silico DNA–DNA hybridization value was 27.2%. The combined phylogenetic relatedness, phenotypic and genotypic features supported the conclusion that strain HB182678T represents a novel species of the genus Mangrovicoccus , for which the name Mangrovicoccus algicola sp. nov. is proposed. The type strain is HB182678T (=MCCC 1K04624T=KCTC 82318T).


Sign in / Sign up

Export Citation Format

Share Document