scholarly journals Aberrant RNA methylation triggers recruitment of an alkylation repair complex

2021 ◽  
Vol 81 (20) ◽  
pp. 4228-4242.e8
Author(s):  
Ning Tsao ◽  
Joshua R. Brickner ◽  
Rebecca Rodell ◽  
Adit Ganguly ◽  
Matthew Wood ◽  
...  
Keyword(s):  
Author(s):  
Enakshi Sivasudhan ◽  
Neil Blake ◽  
Zhi-Liang Lu ◽  
Jia Meng ◽  
Rong Rong

Epidemiological data consistently rank hepatocellular carcinoma (HCC) as one of the leading causes of cancer-related deaths worldwide, often posing severe economic burden on health care. While the molecular etiopathogenesis associated with genetic and epigenetic modifications has been extensively explored, the biological influence of the emerging field of epitranscriptomics and its associated aberrant RNA modifications on tumorigenesis is a largely unexplored territory with immense potential for discovering new therapeutic approaches. In particular, the underlying cellular mechanisms of different hallmarks of hepatocarcinogenesis that are governed by the complex dynamics of m6A RNA methylation demand further investigation. In this review, we reveal the up-to-date knowledge on the mechanistic and functional link between m6A RNA methylation and pathogenesis of HCC.


1979 ◽  
Vol 33b ◽  
pp. 591-593 ◽  
Author(s):  
Glenn R. Björk ◽  
Arne Olsén ◽  
Joseph J. Katz ◽  
Curt R. Enzell ◽  
Åke Åkeson ◽  
...  

2020 ◽  
Author(s):  
Joshua R. Brickner ◽  
Ning Tsao ◽  
Rebecca Rodell ◽  
Clement Oyeniran ◽  
Valentina Lukinović ◽  
...  

SummaryA critical question in genome stability is the nature of the chemical damage responsible for repair activation. We previously reported a novel pathway specifically activated during alkylation damage in human cells, where the E3 ubiquitin ligase RNF113A mediates the recruitment of the ASCC repair complex. Yet the mechanistic basis for the alkylation damage selectivity of this pathway remains unclear. Here, we demonstrate that RNA but not DNA alkylation is the initiating signal for this process. Aberrantly methylated RNA is sufficient to recruit ASCC, while an RNA dealkylase suppresses ASCC recruitment during chemical alkylation. This aberrant RNA methylation causes transcriptional repression in a manner dependent on the ASCC complex. We show that an alkylated pre-mRNA, or an RNA containing a single damaged base, is sufficient to activate RNF113A E3 activity in a phosphorylation-dependent manner. Together, our work identifies an unexpected role for RNA damage in eliciting a DNA repair response, and suggests that RNA may serve as the “canary in the coal mine” for sensing alkylation damage.


2018 ◽  
Vol 14 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Lin Zhang ◽  
Yanling He ◽  
Huaizhi Wang ◽  
Hui Liu ◽  
Yufei Huang ◽  
...  

Background: RNA methylome has been discovered as an important layer of gene regulation and can be profiled directly with count-based measurements from high-throughput sequencing data. Although the detailed regulatory circuit of the epitranscriptome remains uncharted, clustering effect in methylation status among different RNA methylation sites can be identified from transcriptome-wide RNA methylation profiles and may reflect the epitranscriptomic regulation. Count-based RNA methylation sequencing data has unique features, such as low reads coverage, which calls for novel clustering approaches. <P><P> Objective: Besides the low reads coverage, it is also necessary to keep the integer property to approach clustering analysis of count-based RNA methylation sequencing data. <P><P> Method: We proposed a nonparametric generative model together with its Gibbs sampling solution for clustering analysis. The proposed approach implements a beta-binomial mixture model to capture the clustering effect in methylation level with the original count-based measurements rather than an estimated continuous methylation level. Besides, it adopts a nonparametric Dirichlet process to automatically determine an optimal number of clusters so as to avoid the common model selection problem in clustering analysis. <P><P> Results: When tested on the simulated system, the method demonstrated improved clustering performance over hierarchical clustering, K-means, MClust, NMF and EMclust. It also revealed on real dataset two novel RNA N6-methyladenosine (m6A) co-methylation patterns that may be induced directly by METTL14 and WTAP, which are two known regulatory components of the RNA m6A methyltransferase complex. <P><P> Conclusion: Our proposed DPBBM method not only properly handles the count-based measurements of RNA methylation data from sites of very low reads coverage, but also learns an optimal number of clusters adaptively from the data analyzed. <P><P> Availability: The source code and documents of DPBBM R package are freely available through the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/DPBBM/.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Mohammad Burhan Uddin ◽  
Zhishan Wang ◽  
Chengfeng Yang

AbstractThe m6A RNA methylation is the most prevalent internal modification in mammalian mRNAs which plays critical biological roles by regulating vital cellular processes. Dysregulations of the m6A modification due to aberrant expression of its regulatory proteins are frequently observed in many pathological conditions, particularly in cancer. Normal cells undergo malignant transformation via activation or modulation of different oncogenic signaling pathways through complex mechanisms. Accumulating evidence showing regulation of oncogenic signaling pathways at the epitranscriptomic level has added an extra layer of the complexity. In particular, recent studies demonstrated that, in many types of cancers various oncogenic signaling pathways are modulated by the m6A modification in the target mRNAs as well as noncoding RNA transcripts. m6A modifications in these RNA molecules control their fate and metabolism by regulating their stability, translation or subcellular localizations. In this review we discussed recent exciting studies on oncogenic signaling pathways that are modulated by the m6A RNA modification and/or their regulators in cancer and provided perspectives for further studies. The regulation of oncogenic signaling pathways by the m6A modification and its regulators also render them as potential druggable targets for the treatment of cancer.


Sign in / Sign up

Export Citation Format

Share Document