accessory domain
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Qingqing Zhang ◽  
Xiang Liu ◽  
Huijuan Liu ◽  
Bingjie Zhang ◽  
Haitao Yang ◽  
...  

Rv3197 (MABP-1), a non-canonical ABC protein in Mycobacterium tuberculosis, has ATPase activity and confers inducible resistance to the macrolide family of antibiotics. Here we have shown that MSMEG_1954, the homolog of Rv3197 in M. smegmatis, has a similar function of conferring macrolide resistance. Crystal structures of apo-MSMEG_1954 (form1 and form 2) and MSMEG_1954 in complex with ADP have been determined. These three structures show that MSMEG_1954 has at least two different conformations we identify as closed state (MSMEG_1954-form 1) and open state (MSMEG_1954-form 2 and MSMEG_1954-ADP). Structural superimposition shows that the MSMEG_1954-form 2 and MSMEG_1954-ADP complex have similar conformation to that observed for MABP-1 and MABP-1-erythromicin complex structure. However, the antibiotic binding pocket in MSMEG_1954-form 1 is completely blocked by the N-terminal accessory domain. When bound by ADP, the N-terminal accessory domain undergoes conformational change, which results in the open of the antibiotic binding pocket. Because of the degradation of N terminal accessory domain in MSMSG_1954-form 2, it is likely to represent a transitional state between MSMEG_1954-form 1 and MSMEG_1954-ADP complex structure.


Author(s):  
Sho Ashida ◽  
Rikuri Morita ◽  
Yasuteru Shigeta ◽  
Ryuhei Harada

Histone is a scaffold protein that constitutes nucleosomes with DNA in the cell nucleus. When forming histone, hetero octamer is assisted by histone chaperone proteins. As a histone chaperone protein, the crystal structure of yeast nucleosome assembly protein (yNap1) has been determined. For yNap1, a nuclear export signal/sequence (NES) has been identified as a part of the long -helix. Experimental evidence via mutagenesis on budding yeast suggests the NES is necessary for transport out from the cell nucleus. However, the NES is masked by a region defined as an accessory domain (AD). In addition, the role of the AD in nuclear transport has not been elucidated yet. To address the role of the AD, we focused on phosphorylation in the AD because proteome experiments have identified multiple phosphorylation sites of yNap1. To computationally treat phosphorylation, we performed all-atom molecular dynamics (MD) simulations for a set of non-phosphorylated and phosphorylated yNap1 (Nap1-nonP and Nap1-P). As an analysis, we addressed how the NES is exposed to the protein surface by measuring its solvent-access surface area (SASA). As a result, there was a difference in the SASA distributions between both systems. Quantitatively, the median of the SASA distribution of Nap1-P was greater than that of Nap1-nonP, meaning that phosphorylation in the AD exposed to the NES, resulting in increasing its accessibility. In conclusion, yNap1 might modulate the accessibility of the NES by dislocating the AD through phosphorylation.


Biochemistry ◽  
2019 ◽  
Vol 58 (29) ◽  
pp. 3169-3184
Author(s):  
James D. Gumkowski ◽  
Ryan J. Martinie ◽  
Patrick S. Corrigan ◽  
Juan Pan ◽  
Matthew R. Bauerle ◽  
...  

mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
D. Johan van den Hoogen ◽  
Harold J. G. Meijer ◽  
Michael F. Seidl ◽  
Francine Govers

ABSTRACT Sensing external signals and transducing these into intracellular responses requires a molecular signaling system that is crucial for every living organism. Two important eukaryotic signal transduction pathways that are often interlinked are G-protein signaling and phospholipid signaling. Heterotrimeric G-protein subunits activated by G-protein-coupled receptors (GPCRs) are typical stimulators of phospholipid signaling enzymes such as phosphatidylinositol phosphate kinases (PIPKs) or phospholipase C (PLC). However, a direct connection between the two pathways likely exists in oomycetes and slime molds, as they possess a unique class of GPCRs that have a PIPK as an accessory domain. In principle, these so-called GPCR-PIPKs have the capacity of perceiving an external signal (via the GPCR domain) that, via PIPK, directly activates downstream phospholipid signaling. Here we reveal the sporadic occurrence of GPCR-PIPKs in all eukaryotic supergroups, except for plants. Notably, all species having GPCR-PIPKs are unicellular microorganisms that favor aquatic environments. Phylogenetic analysis revealed that GPCR-PIPKs are likely ancestral to eukaryotes and significantly expanded in the last common ancestor of oomycetes. In addition to GPCR-PIPKs, we identified five hitherto-unknown classes of GPCRs with accessory domains, four of which are universal players in signal transduction. Similarly to GPCR-PIPKs, this enables a direct coupling between extracellular sensing and downstream signaling. Overall, our findings point to an ancestral signaling system in eukaryotes where GPCR-mediated sensing is directly linked to downstream responses. IMPORTANCE G-protein-coupled receptors (GPCRs) are central sensors that activate eukaryotic signaling and are the primary targets of human drugs. In this report, we provide evidence for the widespread though limited presence of a novel class of GPCRs in a variety of unicellular eukaryotes. These include free-living organisms and organisms that are pathogenic for plants, animals, and humans. The novel GPCRs have a C-terminal phospholipid kinase domain, pointing to a direct link between sensing external signals via GPCRs and downstream intracellular phospholipid signaling. Genes encoding these receptors were likely present in the last common eukaryotic ancestor and were lost during the evolution of higher eukaryotes. We further describe five other types of GPCRs with a catalytic accessory domain, the so-called GPCR-bigrams, four of which may potentially have a role in signaling. These findings shed new light onto signal transduction in microorganisms and provide evidence for alternative eukaryotic signaling pathways.


2015 ◽  
Vol 290 (40) ◽  
pp. 24614-24625 ◽  
Author(s):  
Juliet R. Girard ◽  
Jeanette L. Tenthorey ◽  
David O. Morgan

2013 ◽  
Vol 288 (40) ◽  
pp. 28962-28974 ◽  
Author(s):  
Marina Besprozvannaya ◽  
Valerie L. Pivorunas ◽  
Zachary Feldman ◽  
Briana M. Burton

2012 ◽  
Vol 68 (10) ◽  
pp. 1339-1345 ◽  
Author(s):  
Camila Ramos Santos ◽  
Carla Cristina Polo ◽  
Juliana Moço Corrêa ◽  
Rita de Cássia Garcia Simão ◽  
Flavio Augusto Vicente Seixas ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document