Chemically modified resveratrol as green corrosion inhibitor for Q235 steel: Electrochemical, SEM, UV and DFT studies

2021 ◽  
Vol 343 ◽  
pp. 117672
Author(s):  
Weiwei Zhang ◽  
Boli Nie ◽  
Meifang Wang ◽  
Shuanghao Shi ◽  
Lei Gong ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1982
Author(s):  
Weilin Liu ◽  
Jiansan Li ◽  
Xiangqi Huang ◽  
Jinye Bi

In this study, calcium carbonate (CaCO3) microparticles having pH-sensitive properties were loaded with sodium lignosulfonate (SLS), a corrosion inhibitor. Scanning electron microscope (SEM), UV–VIS spectrophotometer (UV-vis), X-ray diffraction (XRD), and attenuated total reflection-Fourier-transform infrared spectroscopy (ATR-FTIR) were applied to evaluate the properties of the synthetic microparticles. This material could lead to the release of corrosion inhibitor under different pH conditions of the aqueous media. However, the extent of release of the corrosion inhibitor in the acidic media was higher, leading to enhanced shielding effect of the Q235 steel. These microparticles can serve as anti-corrosion additive for epoxy resin-coated Q235 steel. Electrochemical experiments were used to assess the anti-corrosive ability of the epoxy coatings in simulated concrete pore (SCP) solution, confirming the superior corrosion inhibition of the epoxy coating via incorporation of 5 wt % calcium carbonate microparticles loaded with SLS (SLS/CaCO3). The physical properties of coating specimens were characterized by water absorption, contact angle, adhesion, and pencil hardness mechanical tests.


Sign in / Sign up

Export Citation Format

Share Document