Lability of the First Solvation Shell of Silver Cations in Liquid Ammonia: A Quantum Mechanical Charge Field Molecular Dynamics Simulation Study

2022 ◽  
pp. 118517
Author(s):  
Niko Prasetyo ◽  
Yuniawan Hidayat
2017 ◽  
Vol 19 (45) ◽  
pp. 30822-30833 ◽  
Author(s):  
Syed Tarique Moin ◽  
Thomas S. Hofer

The ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) simulation approach was successfully applied to Fe2+–P and Fe3+–P in water to evaluate their structural, dynamical and energetic properties.


2017 ◽  
Vol 17 (3) ◽  
pp. 531 ◽  
Author(s):  
Wahyu Dita Saputri ◽  
Karna Wijaya ◽  
Ria Armunanto

A quantum mechanical charge field (QMCF) molecular dynamics (MD) simulation has been carried out to describe the structural and dynamical properties of Cu+ ion in liquid ammonia. The first and second shells were treated by ab initio quantum mechanics at the Hartree−Fock (HF) level with the DZP-Dunning basis set for ammonia and LANL2DZ ECP basis set for Cu. The system was equilibrated for 4 ps, then the trajectory data was collected every fifth step for 20 ps at 235.15 K. The structural analysis showed that in the first solvation shell, Cu+ is solvated by 4 ammonia molecules forming a stable structure of tetrahedral with Cu-N bond length of 2.15 Å, whereas in the second solvation shell there are 29 ammonia molecules that have an average distance of 4.79 Å to Cu+ ion. Mean residence time of 3.06 ps was observed for the ammonia ligand in the second solvation shell indicating for a highly unstable structure of the solvation shell. The obtained structure of the first solvation shell from this simulation is in excellent agreement with experimental data.


Sign in / Sign up

Export Citation Format

Share Document