scholarly journals Ycf1/Tic214 Is Not Essential for the Accumulation of Plastid Proteins

2017 ◽  
Vol 10 (1) ◽  
pp. 219-221 ◽  
Author(s):  
Bettina Bölter ◽  
Jürgen Soll
Keyword(s):  
2020 ◽  
Vol 375 (1801) ◽  
pp. 20190397 ◽  
Author(s):  
Karin Krupinska ◽  
Nicolás E. Blanco ◽  
Svenja Oetke ◽  
Michela Zottini

An increasing number of eukaryotic proteins have been shown to have a dual localization in the DNA-containing organelles, mitochondria and plastids, and/or the nucleus. Regulation of dual targeting and relocation of proteins from organelles to the nucleus offer the most direct means for communication between organelles as well as organelles and nucleus. Most of the mitochondrial proteins of animals have functions in DNA repair and gene expression by modelling of nucleoid architecture and/or chromatin. In plants, such proteins can affect replication and early development. Most plastid proteins with a confirmed or predicted second location in the nucleus are associated with the prokaryotic core RNA polymerase and are required for chloroplast development and light responses. Few plastid–nucleus-located proteins are involved in pathogen defence and cell cycle control. For three proteins, it has been clearly shown that they are first targeted to the organelle and then relocated to the nucleus, i.e. the nucleoid-associated proteins HEMERA and Whirly1 and the stroma-located defence protein NRIP1. Relocation to the nucleus can be experimentally demonstrated by plastid transformation leading to the synthesis of proteins with a tag that enables their detection in the nucleus or by fusions with fluoroproteins in different experimental set-ups. This article is part of the theme issue ‘Retrograde signalling from endosymbiotic organelles’.


1979 ◽  
Vol 35 (1) ◽  
pp. 253-266
Author(s):  
S.P. Gibbs

In 8 classes of algae, namely the Cryptophyceae, Raphidophyceae, Haptophyceae, Chrysophyceae, Bacillariophyceae, Xanthophyceae, Eustigmatophyceae and Phaeophyceae, the chloroplasts, in addition to being surrounded by a double-membraned chloroplast envelope, are also enclosed by a cisterna of endoplasmic reticulum called the chloroplast ER. Often this ER cisterna is continuous with the outher membrane of the nuclear envelope in such a manner that the nuclear envelope forms a part of the ER sac enclosing the chloroplast. In all these classes of algae except the Cryptophyceae, a regular network of tubules and vesicles, named the periplastidal reticulum, is present at a specific location between the chloroplast envelope and the chloroplast ER. In the Cryptophyceae, scattered vesicles are found between the chloroplast envelope and the chloroplast ER. Ribosomes which have been shown to be arranged to polysomes are found on the outer membrane of the chloroplast ER. It is proposed that nuclear-coded proteins which are destined for the chloroplast are synthesized on these polysomes, passing during synthesis into the lumen of the ER cisterna. Vesicles containing these proteins then pinch off the chloroplast ER and form the periplastidal reticulum. Vesicles containing these proteins then pinch off the chloroplast ER and form the periplastidal reticulum. Vesicles then fuse with the outer membrane of the chloroplast envelope thereby delivering their contents to the lumen of the chloroplast envelope. Proteins then cross the inner membrane of the chloroplast envelope in an as yet unknown manner. Experimental evidence for this hypothesis comes from studies on Ochromonas danica using chloramphenicol and spectinomycin, which inhibit protein synthesis on plastid ribosomes, and cycloheximide, which inhibits protein synthesis on cytoplasmic ribosomes. In cells of Ochromonas exposed to chloramphenicol or spectinomycin, the periplastidal reticulum proliferates markedly becoming several layers thick. Presumably this build up of periplastidal reticulum occurs because the transport of cytoplasmically synthesized plastid proteins is slowed down when protein synthesis in the chloroplast is inhibited. Conversely, when cells of Ochromonas are treated with cycloheximide, there is a reduction in the amount of periplastidal reticulum presumably because there are no cytoplasmically synthesized proteins to be transported into the chloroplast.


2013 ◽  
Vol 9 (6) ◽  
pp. e1003426 ◽  
Author(s):  
Swati Agrawal ◽  
Duk-Won D. Chung ◽  
Nadia Ponts ◽  
Giel G. van Dooren ◽  
Jacques Prudhomme ◽  
...  
Keyword(s):  

2019 ◽  
Vol 294 (46) ◽  
pp. 17543-17554 ◽  
Author(s):  
Lucas Moyet ◽  
Daniel Salvi ◽  
Imen Bouchnak ◽  
Stéphane Miras ◽  
Laura Perrot ◽  
...  

Cell compartmentalization is an essential process by which eukaryotic cells separate and control biological processes. Although calmodulins are well-known to regulate catalytic properties of their targets, we show here their involvement in the subcellular location of two plant proteins. Both proteins exhibit a dual location, namely in the cytosol in addition to their association to plastids (where they are known to fulfil their role). One of these proteins, ceQORH, a long-chain fatty acid reductase, was analyzed in more detail, and its calmodulin-binding site was identified by specific mutations. Such a mutated form is predominantly targeted to plastids at the expense of its cytosolic location. The second protein, TIC32, was also shown to be dependent on its calmodulin-binding site for retention in the cytosol. Complementary approaches (bimolecular fluorescence complementation and reverse genetics) demonstrated that the calmodulin isoform CAM5 is specifically involved in the retention of ceQORH in the cytosol. This study identifies a new role for calmodulin and sheds new light on the intriguing CaM-binding properties of hundreds of plastid proteins, despite the fact that no CaM or CaM-like proteins were identified in plastids.


Parasitology ◽  
2008 ◽  
Vol 135 (9) ◽  
pp. 1101-1110 ◽  
Author(s):  
A. BODYŁ ◽  
P. MACKIEWICZ

SUMMARYTrypanosomatid parasites possess 2 distinct iron-containing superoxide dismutases (Fe-SODs) designated SODA and SODC, both of which are targeted to their mitochondria. In contrast to SODAs that carry typical mitochondrial transit peptides, SODCs have highly unusual mitochondrial targeting signals. Our analyses clearly show that these pre-sequences are bipartite possessing a signal peptide-like domain followed by a transit peptide-like domain. Consequently, they resemble N-terminal extensions of proteins targeted to multi-membrane plastids, suggesting that trypanosomatids once contained a eukaryotic alga-derived plastid. Further support for this hypothesis comes from striking similarities in length, hydropathy profile, and amino acid composition of SODC pre-sequences to those of Euglena and dinoflagellate plastid proteins. To account for these data, we propose that the Trypanosomatidae initially possessed a gene encoding a mitochondrial Fe-SOD with a classical mitochondrial transit peptide. Before or after plastid acquisition, a gene duplication event gave rise to SODA and SODC. In a subsequent evolutionary step a signal peptide was linked to SODC, enabling its import into the plastid. When the trypanosomatid plastid subsequently was lost, natural selection favoured adaptation of the SODC N-terminal signal as a mitochondrial transit peptide and re-targeting to the mitochondrion.


Sign in / Sign up

Export Citation Format

Share Document