superoxide dismutases
Recently Published Documents


TOTAL DOCUMENTS

712
(FIVE YEARS 19)

H-INDEX

77
(FIVE YEARS 0)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 333
Author(s):  
Magdalena Kluska ◽  
Michał Juszczak ◽  
Jerzy Żuchowski ◽  
Anna Stochmal ◽  
Katarzyna Woźniak

Kaempferol is a well-known antioxidant found in many plants and plant-based foods. In plants, kaempferol is present mainly in the form of glycoside derivatives. In this work, we focused on determining the effect of kaempferol and its glycoside derivatives on the expression level of genes related to the reduction of oxidative stress—NFE2L2, NQO1, SOD1, SOD2, and HO-1; the enzymatic activity of superoxide dismutases; and the level of glutathione. We used HL-60 acute promyelocytic leukemia cells, which were incubated with the anticancer drug etoposide and kaempferol or one of its three glycoside derivatives isolated from the aerial parts of Lens culinaris Medik.—kaempferol 3-O-[(6-O-E-caffeoyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P2), kaempferol 3-O-[(6-O-E-p-coumaroyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P5), and kaempferol 3-O-[(6-O-E-feruloyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P7). We showed that none of the tested compounds affected NFE2L2 gene expression. Co-incubation with etoposide (1 µM) and kaempferol (10 and 50 µg/mL) leads to an increase in the expression of the HO-1 (9.49 and 9.33-fold at 10 µg/mL and 50 µg/mL, respectively), SOD1 (1.68-fold at 10 µg/mL), SOD2 (1.72-fold at 10–50 µg/mL), and NQO1 (1.84-fold at 50 µg/mL) genes in comparison to cells treated only with etoposide. The effect of kaempferol derivatives on gene expression differs depending on the derivative. All tested polyphenols increased the SOD activity in cells co-incubated with etoposide. We observed that the co-incubation of HL-60 cells with etoposide and kaempferol or derivative P7 increases the level of total glutathione in these cells. Taken together, our observations suggest that the antioxidant activity of kaempferol is related to the activation of antioxidant genes and proteins. Moreover, we observed that glycoside derivatives can have a different effect on the antioxidant cellular systems than kaempferol.



2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Pu Yuan ◽  
Wenhao Qian ◽  
Lihua Jiang ◽  
Conghui Jia ◽  
Xiaoxuan Ma ◽  
...  

AbstractPlants can produce reactive oxygen species (ROS) to counteract pathogen invasion, and pathogens have also evolved corresponding ROS scavenging strategies to promote infection and pathogenicity. Catalases (CATs) have been found to play pivotal roles in detoxifying H2O2 formed by superoxide anion catalyzed by superoxide dismutases (SODs). However, few studies have addressed H2O2 removing during rust fungi infection of wheat. In this study, we cloned a CAT gene PsCAT1 from Puccinia striiformis f. sp. tritici (Pst), which encodes a monofunctional heme-containing catalase. PsCAT1 exhibited a high degree of tolerance to pH and temperature, and forms high homopolymers.Heterologous complementation assays in Saccharomyces cerevisiae reveal that the signal peptide of PsCAT1 is functional. Overexpression of PsCAT1 enhanced S. cerevisiae resistance to H2O2. Transient expression of PsCAT1 in Nicotiana benthamiana suppressed Bax-induced cell death. Knockdown of PsCAT1 using a host-induced gene silencing (HIGS) system led to the reduced virulence of Pst, which was correlated to H2O2 accumulation in HIGS plants. These results indicate that PsCAT1 acts as an important pathogenicity factor that facilitates Pst infection by scavenging host-derived H2O2.





Author(s):  
Mariko Harada ◽  
Ayumi Akiyama ◽  
Ryutaro Furukawa ◽  
Shin-ichi Yokobori ◽  
Eiichi Tajika ◽  
...  


2021 ◽  
Vol 12 ◽  
Author(s):  
Adrien Favier ◽  
Pierre Gans ◽  
Elisabetta Boeri Erba ◽  
Luca Signor ◽  
Soumiya Sankari Muthukumar ◽  
...  

In Angiosperms, the plastid-encoded RNA polymerase (PEP) is a multimeric enzyme, essential for the proper expression of the plastid genome during chloroplast biogenesis. It is especially required for the light initiated expression of photosynthesis genes and the subsequent build-up of the photosynthetic apparatus. The PEP complex is composed of a prokaryotic-type core of four plastid-encoded subunits and 12 nuclear-encoded PEP-associated proteins (PAPs). Among them, there are two iron superoxide dismutases, FSD2/PAP9 and FSD3/PAP4. Superoxide dismutases usually are soluble enzymes not bound into larger protein complexes. To investigate this unusual feature, we characterized PAP9 using molecular genetics, fluorescence microscopy, mass spectrometry, X-ray diffraction, and solution-state NMR. Despite the presence of a predicted nuclear localization signal within the sequence of the predicted chloroplast transit peptide, PAP9 was mainly observed within plastids. Mass spectrometry experiments with the recombinant Arabidopsis PAP9 suggested that monomers and dimers of PAP9 could be associated to the PEP complex. In crystals, PAP9 occurred as a dimeric enzyme that displayed a similar fold to that of the FeSODs or manganese SOD (MnSODs). A zinc ion, instead of the expected iron, was found to be penta-coordinated with a trigonal-bipyramidal geometry in the catalytic center of the recombinant protein. The metal coordination involves a water molecule and highly conserved residues in FeSODs. Solution-state NMR and DOSY experiments revealed an unfolded C-terminal 34 amino-acid stretch in the stand-alone protein and few internal residues interacting with the rest of the protein. We hypothesize that this C-terminal extension had appeared during evolution as a distinct feature of the FSD2/PAP9 targeting it to the PEP complex. Close vicinity to the transcriptional apparatus may allow for the protection against the strongly oxidizing aerial environment during plant conquering of terrestrial habitats.



Author(s):  
Wenlong Du ◽  
Pengfei Zhai ◽  
Shuai Liu ◽  
Yuanwei Zhang ◽  
Ling Lu

Superoxide dismutases (SODs) are important metalloenzymes that protect fungal pathogens against the toxic effects of reactive oxygen species (ROS) generated by host defense mechanisms during the infection process. The activation of Cu/Zn-SOD1 is found to be dependent on its c haperone Ccs1 ( c opper c haperone for S OD1). However, the role of Ccs1 ortholog in the human pathogen Aspergillus fumigatus and how these SODs coordinate to mediate oxidative stress response remain elusive. Here, we demonstrated that A. fumigatus CcsA, a Saccharomyces cerevisiae Ccs1 ortholog, is required for cells in response to oxidative response and the activation of Sod1. Deletion of ccsA resulted in increased ROS accumulation and enhanced sensitivity to oxidative stress due to loss of SodA activity. Molecular characterization of CcsA revealed that the conserved CXC motif is required not only for the physical interaction with SodA but also for the oxidative stress adaption. Notably, addition of Mn 2+ or overexpression of cytoplasmic Mn-SodC could rescue the defects of the ccsA or sodA deletion mutant, indicating the important role of Mn 2+ and Mn-SodC in ROS detoxification; however, deletion of CcsA-SodA complex could not affect A. fumigatus virulence. Collectively, our findings demonstrate that CcsA functions as a Cu/Zn-Sod1 chaperone that participates in the adaptation to oxidative stress in A. fumigatus and provide a better understanding of the CcsA-SodA complex-mediated oxidative stress response in filamentous fungi. IMPORTANCE Reactive oxygen species (ROS) produced by phagocytes have been reported to participate in the killing of fungal pathogens. Superoxide dismutases (SODs) are considered to be the first defense line against superoxide anions. Characterizing the regulatory mechanisms of SOD activation is important for understanding how fungi adapt to oxidative stress in hosts. Our findings demonstrated that CcsA functions as a SodA chaperone in A. fumigatus and that the conserved CXC motif within CcsA is required for its interaction with SodA and the CcsA-SodA-mediated oxidative response. These data may provide new insights into how fungal pathogens adapt to oxidative stress via the CcsA-SodA complex.





Sign in / Sign up

Export Citation Format

Share Document