Understanding lateral root formation, one cell at a time

2021 ◽  
Author(s):  
Anamarija Primc ◽  
Alexis Maizel
2021 ◽  
Author(s):  
Pierre-Mathieu Pélissier ◽  
Hans Motte ◽  
Tom Beeckman

Abstract Lateral roots are important to forage for nutrients due to their ability to increase the uptake area of a root system. Hence, it comes as no surprise that lateral root formation is affected by nutrients or nutrient starvation, and as such contributes to the root system plasticity. Understanding the molecular mechanisms regulating root adaptation dynamics towards nutrient availability is useful to optimize plant nutrient use efficiency. There is at present a profound, though still evolving, knowledge on lateral root pathways. Here, we aimed to review the intersection with nutrient signaling pathways to give an update on the regulation of lateral root development by nutrients, with a particular focus on nitrogen. Remarkably, it is for most nutrients not clear how lateral root formation is controlled. Only for nitrogen, one of the most dominant nutrients in the control of lateral root formation, the crosstalk with multiple key signals determining lateral root development is clearly shown. In this update, we first present a general overview of the current knowledge of how nutrients affect lateral root formation, followed by a deeper discussion on how nitrogen signaling pathways act on different lateral root-mediating mechanisms for which multiple recent studies yield insights.


Plant Root ◽  
2007 ◽  
Vol 1 ◽  
pp. 27-33 ◽  
Author(s):  
Takeshi Kuroha ◽  
Shinobu Satoh

2013 ◽  
Vol 8 (2) ◽  
pp. e23106 ◽  
Author(s):  
Huan Wang ◽  
Yaofang Niu ◽  
Rushan Chai ◽  
Miao Liu ◽  
Yongsong Zhang

2007 ◽  
Vol 19 (1) ◽  
pp. 118-130 ◽  
Author(s):  
Yoko Okushima ◽  
Hidehiro Fukaki ◽  
Makoto Onoda ◽  
Athanasios Theologis ◽  
Masao Tasaka

2018 ◽  
Author(s):  
Thea van den Berg ◽  
Kirsten H. ten Tusscher

AbstractThe root system is a major determinant of plant fitness. Its capacity to supply the plant with sufficient water and nutrients strongly depends on root system architecture, which arises from the repeated branching off of lateral roots. A critical first step in lateral root formation is priming, which prepatterns sites competent of forming a lateral root. Priming is characterized by temporal oscillations in auxin, auxin signalling and gene expression in the root meristem, which through growth become transformed into a spatially repetitive pattern of competent sites. Previous studies have demonstrated the importance of auxin synthesis, transport and perception for the amplitude of these oscillations and their chances of producing an actual competent site. Additionally, repeated lateral root cap apoptosis was demonstrated to be strongly correlated with repetitive lateral root priming. Intriguingly, no single mutation has been identified that fully abolishes lateral root formation, and thusfar the mechanism underlying oscillations has remained unknown. In this study, we investigated the impact of auxin reflux loop properties combined with root growth dynamics on priming, using a computational approach. To this end we developed a novel multi-scale root model incorporating a realistic root tip architecture and reflux loop properties as well as root growth dynamics. Excitingly, in this model, repetitive auxin elevations automatically emerge. First, we show that root tip architecture and reflux loop properties result in an auxin loading zone at the start of the elongation zone, with preferential auxin loading in narrow vasculature cells. Second, we demonstrate how meristematic root growth dynamics causes regular alternations in the sizes of cells arriving at the elongation zone, which subsequently become amplified during cell expansion. These cell size differences translate into differences in cellular auxin loading potential. Combined, these properties result in temporal and spatial fluctuations in auxin levels in vasculature and pericycle cells. Our model predicts that temporal priming frequency predominantly depends on cell cycle duration, while cell cycle duration together with meristem size control lateral root spacing.


2017 ◽  
Vol 18 (10) ◽  
pp. 2084 ◽  
Author(s):  
Zeyu Cao ◽  
Xingliang Duan ◽  
Ping Yao ◽  
Weiti Cui ◽  
Dan Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document