Spectroscopic (FT-IR,1H and 13C NMR) characterization and density functional theory calculations for (Z)-5-(4-nitrobenzyliden)-3-N(2-ethoxyphenyl)-2-thioxo-thiazolidin-4-one (ARNO)

2017 ◽  
Vol 1147 ◽  
pp. 569-581 ◽  
Author(s):  
K. Toubal ◽  
N. Boukabcha ◽  
Ö. Tamer ◽  
N. Benhalima ◽  
S. Altürk ◽  
...  
2019 ◽  
Vol 10 (2) ◽  
pp. 95-101
Author(s):  
Sebile Işık Büyükekşi ◽  
Namık Özdemir ◽  
Abdurrahman Şengül

A versatile synthetic building block, 2-amino-1,10-phenanthrolin-1-ium chloride (L∙HCl) was synthesized and characterized by IR, 1H and 13C NMR DEPT analysis, UV/Vis and single-crystal X-ray diffraction technique. The molecular geometry, vibrational wavenumbers and gauge including atomic orbital (GIAO), 1H and 13C NMR chemical shifts values of the title compound in the ground state were obtained by using density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set and compared with the experimental data. Electronic absorption spectrum of the salt was determined using the time-dependent density functional theory (TD-DFT) method at the same level. In the NMR and electronic absorption spectra calculations, the effect of solvent on the theoretical parameters was included using the default model with DMSO as solvent. The obtained theoretical parameters agree well with the experimental findings.


2020 ◽  
Vol 44 (5) ◽  
pp. 1254-1264
Author(s):  
Shaya AL-RAQA ◽  
İpek ÖMEROĞLU ◽  
Doğan ERBAHAR ◽  
Mahmut DURMUŞ

Phenyl-4,4-di(3,6-dibutoxyphthalonitrile) (3) was synthesized by the reaction of 1,4-phenylenebisboronic acid (1) and 4-bromo-3,6-dibutoxyphthalonitrile (2), using Suzuki cross-coupling reaction. The newly synthesized compound (3) was characterized by FT-IR, MALDI-MS, ESI-MS, 1H-NMR, 13C-NMR, and 13C-DEPT-135-NMR. The fluorescence property of phenyl-4,4-di(3,6- dibutoxyphthalonitrile) (3) towards various metal ions was investigated by fluorescence spectroscopy, and it was observed thatthe compound (3) displayed a significantly ‘turn-off’ response to Fe3+, which was referred to 1:2 complex formation between ligand (3) and Fe3+. The compound was also studied via density functional theory calculations revealing the interaction mechanism of the molecule with Fe3+ ions.


2007 ◽  
Vol 5 (2) ◽  
pp. 396-419 ◽  
Author(s):  
N. Nuwan De Silva ◽  
Titus Albu

AbstractHybrid density functional theory calculations at the mPW1PW91/6-31+G(d,p) level of theory have been used to investigate the optimized structures and other molecular properties of five different series of thiosemicarbazones. The investigated compounds were obtained from acenaphthenequinone, isatin and its derivatives, and alloxan. The focus of the study is the isomerism and the NMR characterization of these thiosemicarbazones. It was found that only one isomer is expected for thiosemicarbazones and methylthiosemicarbazones, while for dimethylthiosemicarbazones, two isomers are possible. All investigated thiosemicarbazones exhibit a hydrazinic proton that is highly deshielded and resonates far downfield in the proton NMR spectra. This proton is a part of a characteristic sixmembered ring, and its NMR properties are a result of its strong, intermolecular hydrogen bond. The relationships between the calculated 1H and 13C NMR chemical shifts and various geometric parameters are reported.


Author(s):  
Erdem Ergan ◽  
Nurullah Seker ◽  
Begum Akbas ◽  
Esvet Akbas

In this work, we wanted to define a general and comprehensive strategy for the synthesis of tetrazolo[1,5-a]pyrimidine derivatives. For this purpose, we obtained new tetrazolo[1,5-a]pyrimidine molecules via the mercury-promoted desulfurization reaction, including hydrolysis, cyclizations, and eliminations. All of the molecules were characterized by FT-IR, 1H NMR, 13C NMR, and elemental analysis. On the other hand, the potentials of compounds as corrosion inhibitors were calculated at B3LYP / 6-31G (d, p) level via density functional theory (DFT).


Sign in / Sign up

Export Citation Format

Share Document