Towards low-impact-sensitivity through crystal engineering: New energetic co-crystals formed between Picric acid, Trinitrotoluene and 9-Vinylanthracene

2020 ◽  
Vol 1219 ◽  
pp. 128614
Author(s):  
Nilgün Şen ◽  
Hayrettin Dursun ◽  
Karl S. Hope ◽  
Hasan Nazir ◽  
Nurcan Acar ◽  
...  
CrystEngComm ◽  
2018 ◽  
Vol 20 (6) ◽  
pp. 837-848 ◽  
Author(s):  
Beibei Tian ◽  
Ying Xiong ◽  
Lizhen Chen ◽  
Chaoyang Zhang

The crystal packing structure–safety (usually represented by sensitivity) relationships of energetic materials (EMs) are requisite to set a basis for tailoring new ones with the desired safety by means of crystal engineering, because safety is one of the two most important properties of EMs for which there is always a high concern.


Author(s):  
Larry F. Lemanski ◽  
Eldridge M. Bertke ◽  
J. T. Justus

A recessive mutation has been recently described in the Mexican Axolotl, Ambystoma mexicanum; in which the heart forms structurally, but does not contract (Humphrey, 1968. Anat. Rec. 160:475). In this study, the fine structure of myocardial cells from normal (+/+; +/c) and cardiac lethal mutant (c/c) embryos at Harrison's stage 40 was compared. The hearts were fixed in a 0.1 M phosphate buffered formaldehyde-glutaraldehyde-picric acid-styphnic acid mixture and were post fixed in 0.1 M s-collidine buffered 1% osmium tetroxide. A detailed study of heart development in normal and mutant embryos from stages 25-46 will be described elsewhere.


Author(s):  
Brigid R. Heywood ◽  
S. Champ

Recent work on the crystallisation of inorganic crystals under compressed monomolecular surfactant films has shown that two dimensional templates can be used to promote the oriented nucleation of solids. When a suitable long alkyl chain surfactant is cast on the crystallisation media a monodispersied population of crystals forms exclusively at the monolayer/solution interface. Each crystal is aligned with a specific crystallographic axis perpendicular to the plane of the monolayer suggesting that nucleation is facilitated by recognition events between the nascent inorganic solid and the organic template.For example, monolayers of the long alkyl chain surfactant, stearic acid will promote the oriented nucleation of the calcium carbonate polymorph, calcite, on the (100) face, whereas compressed monolayers of n-eicosyl sulphate will induce calcite nucleation on the (001) face, (Figure 1 & 2). An extensive program of research has confirmed the general principle that molecular recognition events at the interface (including electrostatic interactions, geometric homology, stereochemical complementarity) can be used to promote the crystal engineering process.


2011 ◽  
Vol 3 (11) ◽  
pp. 456-458
Author(s):  
D. Jencyline Navarani ◽  
◽  
P. Selvarajan P. Selvarajan

Author(s):  
Hequn Li ◽  
Chongwei An ◽  
Baoyun Ye ◽  
Wei Ji ◽  
Jingyu Wang
Keyword(s):  

2018 ◽  
Author(s):  
Igor Baburin

The paper calls attention to the most symmetric interpenetration patterns of honeycomb layers. To the best of my knowledge, such patterns remained unknown so far. In my contribution a rigorous derivation of such patterns is given that makes use of a new approach to interpenetrating nets. The results are presented in a broad context of structural chemistry and crystal engineering.


2019 ◽  
Author(s):  
Kazuki Morita ◽  
Ji-Sang Park ◽  
Sunghyun Kim ◽  
Kenji Yasuoka ◽  
Aron Walsh

The Aurivillius phases of complex bismuth oxides have attracted considerable attention due to their lattice polarization (ferroelectricity) and photocatalytic activity. We report a first-principles exploration of Bi<sub>2</sub>WO<sub>6</sub> and the replacement of W<sup>6+</sup> by pentavalent (Nb<sup>5+</sup>, Ta<sup>5+</sup>) and tetravalent (Ti<sup>4+</sup>, Sn<sup>4+</sup>) ions, with charge neutrality maintained by the formation of a mixed-anion oxyhalide sublattice. We find that Bi<sub>2</sub>SnO<sub>4</sub>F<sub>2</sub> is thermodynamically unstable, in contrast to Bi<sub>2</sub>TaO<sub>5</sub>F, Bi<sub>2</sub>NbO<sub>5</sub>F and Bi<sub>2</sub>TiO<sub>4</sub>F<sub>2</sub>. The electric dipoles introduced by chemical substitutions in the parent compound are found to suppress the spontaneous polarization from 61.55 μC/cm<sup>2</sup> to below 15.50 μC/cm<sup>2</sup>. Analysis of the trends in electronic structure, surface structure, and ionization potentials are reported. This family of materials can be further extended with control of layer thicknesses and choice of compensating halide species.<br>


Sign in / Sign up

Export Citation Format

Share Document