Structural changes of 1-(Phenylethynyl)naphthalene upon electronic excitation from Franck-Condon fits of several fluorescence emission spectra.†

2021 ◽  
pp. 131910
Author(s):  
Marie-Luise Hebestreit ◽  
Christian Henrichs ◽  
Johannes Schäfer ◽  
Jascha Martini ◽  
Johannes Auerswald ◽  
...  
Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1286 ◽  
Author(s):  
Faez Iqbal Khan ◽  
Fakhrul Hassan ◽  
Razique Anwer ◽  
Feng Juan ◽  
Dakun Lai

Two photoactivatable near infrared fluorescent proteins (NIR FPs) named “PAiRFP1” and “PAiRFP2” are formed by directed molecular evolution from Agp2, a bathy bacteriophytochrome of Agrobacterium tumefaciens C58. There are 15 and 24 amino acid substitutions in the structure of PAiRFP1 and PAiRFP2, respectively. A comprehensive molecular exploration of these bacteriophytochrome photoreceptors (BphPs) are required to understand the structure dynamics. In this study, the NIR fluorescence emission spectra for PAiRFP1 were recorded upon repeated excitation and the fluorescence intensity of PAiRFP1 tends to increase as the irradiation time was prolonged. We also predicted that mutations Q168L, V244F, and A480V in Agp2 will enhance the molecular stability and flexibility. During molecular dynamics (MD) simulations, the average root mean square deviations of Agp2, PAiRFP1, and PAiRFP2 were found to be 0.40, 0.49, and 0.48 nm, respectively. The structure of PAiRFP1 and PAiRFP2 were more deviated than Agp2 from its native conformation and the hydrophobic regions that were buried in PAiRFP1 and PAiRFP2 core exposed to solvent molecules. The eigenvalues and the trace of covariance matrix were found to be high for PAiRFP1 (597.90 nm2) and PAiRFP2 (726.74 nm2) when compared with Agp2 (535.79 nm2). It was also found that PAiRFP1 has more sharp Gibbs free energy global minima than Agp2 and PAiRFP2. This comparative analysis will help to gain deeper understanding on the structural changes during the evolution of photoactivatable NIR FPs. Further work can be carried out by combining PCR-based directed mutagenesis and spectroscopic methods to provide strategies for the rational designing of these PAiRFPs.


2016 ◽  
Vol 144 (8) ◽  
pp. 084304 ◽  
Author(s):  
Felix Gmerek ◽  
Benjamin Stuhlmann ◽  
Leonardo Álvarez-Valtierra ◽  
David W. Pratt ◽  
Michael Schmitt

2014 ◽  
Vol 940 ◽  
pp. 11-15
Author(s):  
Jun Qin Feng ◽  
Jun Fang Chen

Zinc nitride films were deposited by ion sources-assisted magnetron sputtering with the use of Zn target (99.99% purity) on 7059 glass substrates. The films were characterized by XRD, SEM and EDS, the results of which show that the polycrystalline zinc nitride thin film can be grown on the glass substrates, the EDS spectrum confirmed the chemical composition of the films and the SEM images revealed that the zinc nitride thin films have a dense structure. Ultraviolet-visible-near infrared spectrophotometer was used to study the transmittance behaviors of zinc nitride thin films, which calculated the optical band gap by Davis Mott model. The results of the fluorescence emission spectra show the zinc nitride would be a direct band gap semiconductor material.


1992 ◽  
Vol 271 ◽  
Author(s):  
Gregory J. Exarhos ◽  
Nancy J. Hess

ABSTRACTIn situ optical methods are reviewed for characterization of phase transformation processes and evaluation of residual stress in solution-deposited metastable oxide films. Such low density films most often are deposited as disordered phases making them prone to crystallization and attendant densification when subjected to increased temperature and/or applied pressure. Inherent stress imparted during film deposition and its evolution during the transformation are evaluated from phonon frequency shifts seen in Raman spectra (TiO2) or from changes in the laser-induced fluorescence emission spectra for films containing rare earth (Sm+3:Y3Al5O12) or transition metal (Cr+3 :Al2O3) dopants. The data in combination with measured increases in line intensities intrinsic to the evolving phase are used to follow crystallization processes in thin films. In general, film deposition parameters are found to influence the crystallite ingrowth kinetics and the magnitude of stress and stress relaxation in the film during the transformation. The utility of these methods to probe crystallization phenomena in oxide films will be addressed.


2012 ◽  
Vol 19 (3) ◽  
pp. 943-947 ◽  
Author(s):  
Z. Parang ◽  
A. Keshavarz ◽  
S. Farahi ◽  
S.M. Elahi ◽  
M. Ghoranneviss ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (62) ◽  
pp. 50306-50311 ◽  
Author(s):  
Illa Ramakanth ◽  
Jaromír Pištora

Figure showing the effect of pH on CPC gel formation at 25 °C and fluorescence emission spectra of CPC solutions at pH ∼ 11.8.


Sign in / Sign up

Export Citation Format

Share Document