Cavitation erosion resistance of Ti6Al4V laser alloyed with TiC-reinforced dual phase intermetallic matrix composites

2007 ◽  
Vol 454-455 ◽  
pp. 63-68 ◽  
Author(s):  
Muthukannan Duraiselvam ◽  
Rolf Galun ◽  
Volker Wesling ◽  
Barry L. Mordike ◽  
Rolf Reiter ◽  
...  
2018 ◽  
Vol 23 (4) ◽  
pp. 291-301
Author(s):  
Jovana Ružić ◽  
Jelena Stašić ◽  
Dušan Božić ◽  
Marina Dojčinović ◽  
Tatjana Volkov-Husović

Copper matrix composites reinforced with ZrB2 particles were produced in two ways: by hot pressing (HP) and laser-sintering process. Powder mixture Cu-Zr-B was mechanically alloyed before densification processes. Variations in the microstructure of treated samples obtained during cavitation test were analyzed by scanning electron microscopy (SEM). Cavitation erosion resistance was investigated with the standard test method for cavitation erosion using vibratory apparatus. Changes in mechanical alloying duration show a strong influence on cavitation erosion resistance of Cu–ZrB2 composites regardless the number of reinforcements. Laser-sintered samples show better cavitation erosion resistance than hot-pressed samples.


MRS Bulletin ◽  
1990 ◽  
Vol 15 (12) ◽  
pp. 47-53 ◽  
Author(s):  
N.S. Stoloff ◽  
D.E. Alman

Although intermetallics based on aluminum or silicon tend to have a very attractive combination of low density and excellent oxidation resistance, they suffer from lack of adequate creep strength and, in most cases, from inadequate ductility and toughness. It has been recognized for several years that an approach which could simultaneously solve both problems, without degrading other properties, is to utilize the intermetallics as matrices for composite materials. The consequence has been an explosion of interest in two-phase intermetallic-based alloys.With the exception of some early work by Seybolt, intermetallic matrices have been utilized for composites only for the past five to six years; the first published reference to systematic studies of fibrous composites dates from the proceedings of an MRS meeting in December 1986. The published literature is much sparser than, for example, that on ceramic matrix composites, which have been under development for a much longer period. Nevertheless, an appreciable number of intermetallic matrices have been reinforced with fibers or particles.Because of the relatively high melting points and extreme brittleness of most intermetallic compounds utilized as matrices, as well as other significant advantages, enormous effort has been devoted to powder metallurgical techniques. In this category we include reactive sintering of elemental or elemental plus prealloyed powders, reactive hot pressing, reactive HIPing, injection molding, the XD process, dynamic compaction of powders, mechanical alloying, the powder cloth method, and, of course, traditional hot pressing techniques.


Author(s):  
M. G. Burke ◽  
M. N. Gungor ◽  
M. A. Burke

Intermetallic matrix composites are candidates for ultrahigh temperature service when light weight and high temperature strength and stiffness are required. Recent efforts to produce intermetallic matrix composites have focused on the titanium aluminide (TiAl) system with various ceramic reinforcements. In order to optimize the composition and processing of these composites it is necessary to evaluate the range of structures that can be produced in these materials and to identify the characteristics of the optimum structures. Normally, TiAl materials are difficult to process and, thus, examination of a suitable range of structures would not be feasible. However, plasma processing offers a novel method for producing composites from difficult to process component materials. By melting one or more of the component materials in a plasma and controlling deposition onto a cooled substrate, a range of structures can be produced and the method is highly suited to examining experimental composite systems. Moreover, because plasma processing involves rapid melting and very rapid cooling can be induced in the deposited composite, it is expected that processing method can avoid some of the problems, such as interfacial degradation, that are associated with the relatively long time, high temperature exposures that are induced by conventional processing methods.


Author(s):  
Juliana Barbarioli ◽  
André Tschiptschin ◽  
Cherlio Scandian ◽  
Manuelle Curbani Romero

2000 ◽  
Author(s):  
Ronald Gibala ◽  
Amit K. Ghosh ◽  
David J. Srolovitz ◽  
John W. Holmes ◽  
Noboru Kikuchi

Sign in / Sign up

Export Citation Format

Share Document