The coupled temperature–strain rate sensitivity of Ti–29Nb–13Ta–4.6Zr alloy

2014 ◽  
Vol 610 ◽  
pp. 258-262 ◽  
Author(s):  
E. Farghadany ◽  
A. Zarei-Hanzaki ◽  
H.R. Abedi ◽  
D. Dietrich ◽  
M.R. Yadegari ◽  
...  
Author(s):  
E.D. Tabachnikova ◽  
V. Z. Bengus ◽  
V.D. Natsik ◽  
A.V. Podolskii ◽  
S. N. Smirnov ◽  
...  

Author(s):  
Bo Pu ◽  
Ping Song ◽  
Wen-bin Li ◽  
Wen-jin Yao ◽  
Xiao-ming Wang

Abstract This paper presents a study on plastic deformation behavior of Cu–50Ta alloy at temperatures of 286–473 K and strain-rate of 0.01–6200 s−1. The effects of temperature, strain-rate, and strain on the yield strength, flow stress, and strain-rate sensitivity coefficient were determined. A phenomenological model was established to predict variation of the strain-rate sensitivity coefficient for Cu–50Ta alloy under dynamic compression. A Johnson–Cook constitutive model was established to predict the equivalent stress–equivalent plastic strain relationship under extreme deformation (high temperature and strain-rate). The results showed that the plastic deformation behavior of Cu–50Ta alloy was affected by temperature, strain-rate, and strain. The material exhibited obvious strain-rate strengthening and thermal softening. As the strain-rate increased, the yield strength logarithmically increased. At a temperature of 286 K, the strain-rate increased from 0.01 s−1 to 6200 s−1, and the yield strength increased from 543.75 MPa to 881.13 MPa. In addition, the yield strength linearly decreased as the deformation temperature increased. Under conditions of dynamic deformation, the variation of strain-rate sensitivity coefficient could be expressed as a function of strain-rate and strain. The phenomenological model accurately described the variation of the strain-rate sensitivity coefficient of Cu–50Ta under dynamic deformation conditions. The Johnson–Cook constitutive parameters, calibrated by experimental data, described the plastic deformation behavior of the alloy under high-velocity impact.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 339
Author(s):  
Xiang Wang ◽  
Zhi Qiang Ren ◽  
Wei Xiong ◽  
Si Nan Liu ◽  
Ying Liu ◽  
...  

The negative strain rate sensitivity (SRS) of metallic glasses is frequently observed. However, the physical essence involved is still not well understood. In the present work, small-angle X-ray scattering (SAXS) and high-resolution transmission electron microscopy (HRTEM) reveal the strong structure heterogeneity at nanometer and tens of nanometer scales, respectively, in bulk metallic glass (BMG) Zr64.13Cu15.75Ni10.12Al10 subjected to fully confined compression processing. A transition of SRS of stress, from 0.012 in the as-cast specimen to −0.005 in compression processed specimen, was observed through nanoindentation. A qualitative formulation clarifies the critical role of internal stress induced by structural heterogeneity in this transition. It reveals the physical origin of this negative SRS frequently reported in structurally heterogeneous BMG alloys and its composites.


Author(s):  
R.D. Liu ◽  
Y.Z. Li ◽  
L. Lin ◽  
C.P. Huang ◽  
Z.H. Cao ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 369
Author(s):  
Jianhui Mao ◽  
Wenjun Liu ◽  
Dongfang Li ◽  
Chenkai Zhang ◽  
Yi Ma

As an excellent multifunctional single crystal, potassium dihydrogen phosphate (KDP) is a well-known, difficult-to-process material for its soft-brittle and deliquescent nature. The surface mechanical properties are critical to the machining process; however, the characteristics of deformation behavior for KDP crystals have not been well studied. In this work, the strain rate effect on hardness was investigated on the mechanically polished tripler plane of a KDP crystal relying on nanoindentation technology. By increasing the strain rate from 0.001 to 0.1 s−1, hardness increased from 1.67 to 2.07 GPa. Hence, the strain rate sensitivity was determined as 0.053, and the activation volume of dislocation nucleation was 169 Å3. Based on the constant load-holding method, creep deformation was studied at various holding depths at room temperature. Under the spherical tip, creep deformation could be greatly enhanced with increasing holding depth, which was mainly due to the enlarged holding strain. Under the self-similar Berkovich indenter, creep strain could be reduced at a deeper location. Such an indentation size effect on creep deformation was firstly reported for KDP crystals. The strain rate sensitivity of the steady-state creep flow was estimated, and the creep mechanism was qualitatively discussed.


Sign in / Sign up

Export Citation Format

Share Document