Influence of squeeze casting pressure and heat treatment on microstructure and mechanical properties of Mg94Ni2Y4 alloy with LPSO structure

2017 ◽  
Vol 707 ◽  
pp. 280-286 ◽  
Author(s):  
Liangyan Hao ◽  
Xiong Yang ◽  
Shulin Lü ◽  
Xiaogang Fang ◽  
Shusen Wu
2019 ◽  
Vol 285 ◽  
pp. 139-145
Author(s):  
Le Cheng ◽  
Hong Xing Lu ◽  
Qiang Zhu ◽  
Xiang Kai Zhang ◽  
Ai Di Shen ◽  
...  

Semi-solid squeeze casting (SS-SC) is a new processing technology which combines semi-solid processing (SSP) and squeeze casting (SC). In this process, semi-solid slurry fills mold by using its rheological property and solidifies under high pressure. It has several advantages, such as stable filling, small heat impact to the mold, low cost, high density and excellent mechanical properties of castings, which receives more and more attention. The microstructure of castings provided by SS-SC is quite different from that of casting provided by conventional SC in as-cast condition, which leads to differences in the evolution of microstructure and mechanical properties in heat treatment process. In this study, A356.2 aluminum alloys castings were provided by both SS-SC and conventional SC respectively. The evolution of microstructure and mechanical properties of castings during heat treatment was investigated to obtain the best mechanical properties of semi-solid squeeze castings. Keywords:Microstructure, Mechanical properties, Heat treatment, A356 alloy, Semi-Solid Squeeze Casting


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
S. Souissi ◽  
N. Souissi ◽  
H. Barhoumi ◽  
M. ben Amar ◽  
C. Bradai ◽  
...  

In this study, the effects of squeeze casting process and T6 heat treatment on the microstructure and mechanical properties of 2017A aluminum alloy were investigated with scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), differential scanning calorimetry (DSC), and microhardness and tensile tests. The results showed that this alloy contained α matrix, θ-Al2Cu, and other phases. Furthermore, the applied pressure and heat treatment refines the microstructure and improve the ultimate tensile strength (UTS) to 296 MPa and the microhardness to 106 HV with the pressure 90 MPa after ageing at 180°C for 6 h. With ageing temperature increasing to 320°C for 6 h, the strength of the alloy declines slightly to 27 MPa. Then, the yield strength drops quickly when temperature reaches over 320°C. The high strength of the alloy in peak-aged condition is caused by a considerable amount of θ′ precipitates. The growth of θ′ precipitates and the generation of θ phase lead to a rapid drop of the strength when temperature is over 180°C.


2021 ◽  
Vol 64 ◽  
pp. 620-632
Author(s):  
Alexander Malikov ◽  
Anatoly Orishich ◽  
Igor Vitoshkin ◽  
Evgeniy Karpov ◽  
Alexei Ancharov

Sign in / Sign up

Export Citation Format

Share Document