Mechanical and fracture behavior of high strength steels under high strain rate deformation: Experiments and modelling

2020 ◽  
Vol 779 ◽  
pp. 139125 ◽  
Author(s):  
T. Chiyatan ◽  
V. Uthaisangsuk
2014 ◽  
Vol 611-612 ◽  
pp. 167-172 ◽  
Author(s):  
Piotr Skubisz ◽  
Łukasz Lisiecki

Paper presents deformation behaviour and microstructural response of selected medium-carbon high-strength steels commonly used for high-duty components deformed under high-strain-rate and warm work temperature range. The investigation of material behaviour is oriented at analysis of hot and warm workability of material and microstructure evolution resultant from deformation mechanisms, strain induced recrystallization and hardening at temperatures of lower forging regime and high strain rate deformation. The effect of these factors on microstructure after forging and subsequent direct-cooling was studied. Metallographic work aided with numerical methods of simulation of the metal flow and microstructure evolution during forging were used to correlate thermo-mechanical parameters observed with microstructure and mechanical properties after forging and cooling.


2020 ◽  
Vol 845 ◽  
pp. 155540 ◽  
Author(s):  
Min Cheol Jo ◽  
Selim Kim ◽  
Dae Woong Kim ◽  
Hyung Keun Park ◽  
Sung Suk Hong ◽  
...  

2021 ◽  
Vol 250 ◽  
pp. 05013
Author(s):  
Ezio Cadoni ◽  
Matteo Dotta ◽  
Daniele Forni

In order to properly design critical infrastructures and buildings in steel (bridges, high-rise building, off-shore, cranes, etc.), certain requirements concerning to mechanical resistance and robustness under exceptional actions have to be carefully fulfilled. An acceptable level of safety must be assured to avoid human loss, environmental pollution and material damage. These structures can be subjected to severe accidental loading such as blast or impact. In this context it is fundamental to adequately know the behaviour of structural steel under high strain rate. Modern high strength steels are quenched and selftempered steels. These steels have several layers with differentiated microstructures (martensitic in the cortical part and ferritic in the core). The behaviour of the single layer at high strain rate regimes have to be accurately studied. The paper collects and discusses the tensile results at high strain rate obtained on samples of homogeneous layers of S690QL and S960QL steels. Finally, the characterisation of the single layers has been used in order to analyse the results obtained in large specimen obtained from slabs 12mm thick.


Sign in / Sign up

Export Citation Format

Share Document