Microstructure and mechanical properties of A-TIG welded AISI 316L SS-Alloy 800 dissimilar metal joint

2020 ◽  
Vol 790 ◽  
pp. 139685 ◽  
Author(s):  
Anup Kulkarni ◽  
D.K. Dwivedi ◽  
M. Vasudevan
Author(s):  
Liang Wang ◽  
Sergio D. Felicelli ◽  
Jacob Coleman ◽  
Rene Johnson ◽  
Karen M. B. Taminger ◽  
...  

Electron beam freeform fabrication (EBF3) is a process that uses an electron beam and wire feedstock to fabricate metallic parts inside a vacuum chamber. In this study, single and multiple layer linear deposits of AISI 316L stainless steel were produced with the EBF3 machine at NASA Langley Research Center (LaRC). EBF3 process parameters, including beam current, translation speed, and wire feed rate, were investigated in order to consider their effects on the resulting steel deposit geometry, microstructure and mechanical properties. Results indicate that the EBF3 process can produce pore-free, fully dense material within the range of process parameters used in this study. The electron beam deposited stainless steel has a solidification microstructure with fine columnar grains within most parts of the deposit due to the high cooling rate during the deposition, with some small homogeneous equiaxed grains at the top of the deposit. The mechanical properties of the deposits are comparable to those of wrought metal, which is attributed to the homogeneous fine-grained microstructure.


2006 ◽  
Vol 513 ◽  
pp. 35-50
Author(s):  
K. Sikorski ◽  
Agnieszka Szymańska ◽  
M. Sekuła ◽  
D. Kowalczyk ◽  
Jan Kazior ◽  
...  

The aim of the study was to obtain a ferritic-austenitic stainless steel through sintering of the mixture of austenitic steel AISI 316L powders with silicon in the amount ranging from 1 to 7%. The pressed mixtures were sintered at 1240oC for 60 minutes under hydrogen atmosphere. The results of the silicon admixture on the density, porosity, microstructure and mechanical properties of the sintered specimens are discussed.


Sign in / Sign up

Export Citation Format

Share Document