aisi 316l stainless steel
Recently Published Documents


TOTAL DOCUMENTS

376
(FIVE YEARS 92)

H-INDEX

41
(FIVE YEARS 5)

2022 ◽  
Vol 60 (1) ◽  
pp. 46-52
Author(s):  
Young Woo Seo ◽  
Chan Yang Kim ◽  
Bo Kyung Seo ◽  
Won Sub Chung

This study evaluated changes in delta-ferrite content depending on the preheating of AISI 316L stainless steel. We also determined the reasons for the variation in delta-ferrite content, which affects corrosion resistance. Changes in delta-ferrite content after preheating was confirmed using a Feritscope, and the microstructure was analyzed using optical microscopy (OM). We found that the delta-ferrite microstructure size decreased when preheating time was increased at 1295 oC, and that the delta-ferrite content could be controlled through preheating. Potentiodynamic polarization test were carried out in NaCl (0.5 M) + H2SO4 (0.5 M) solution, and it was found that higher delta-ferrite content resulted in less corrosion potential and passive potential. To determine the cause, an analysis was conducted using energy-dispersive spectroscopy (EDS), which confirmed that higher delta-ferrite content led to weaker corrosion resistance, due to Cr degradation at the delta-ferrite and austenite boundaries. The degradation of Cr on the boundaries between austenite and delta-ferrite can be explained by the difference in the diffusion coefficient of Cr in the ferrite and austenite. A scanning electron microscopy (SEM) analysis of material used for actual semiconductor piping confirmed that corrosion begins at the delta-ferrite and austenite boundaries. These results confirm the need to control delta-ferrite content in AISI 316L stainless steel used for semiconductor piping.


2021 ◽  
pp. 53-57
Author(s):  
Alexander Grenadyorov ◽  
Andrey Solovyev ◽  
Konstantin Oskomov ◽  
Evgeniy Yakovlev

The paper presents the research results of corrosion and mechanical properties of the AISI 316L stainless steel after the surface treatment. This treatment includes the formation of the titanium-based surface alloy provided by the low-energy high-current electron beam. The obtained surface alloy used as an underlayer, is then coated with the a-C:H:SiOx film using the PACVD method. It is shown that such a combined treatment of the steel surface improves its corrosion resistance, i. e., reduces the current density from 110-7 to 910-10 A/cm2 and corrosion rate from 1.110-3 to 9.310-6 mm/year. The resulted modified steel surface possesses high mechanical and tribological properties


2021 ◽  
Vol 5 (4) ◽  
pp. 136
Author(s):  
Morgane Mokhtari ◽  
Pierrick Pommier ◽  
Yannick Balcaen ◽  
Joel Alexis

Among all the additive manufacturing techniques, Laser Powder Bed Fusion (LBPF), also called Selective Laser Melting (SLM), is the most common technique due to its high capability of building complex parts with generally improved mechanical properties. One of the main drawbacks of this technique is the sample size limitation, which depends on elaborating chamber dimensions. In this study, we investigate the viability of obtaining large parts with the laser welding of additive manufactured plates. A comparison of the microstructure and the tensile mechanical properties of SLM-welded plates and cold-rolled welded plates was performed. This paper shows the possibility of obtaining defect-free parts. Even if welding has a low impact on the microstructure of the SLM samples, fractures are located on the fusion zone, and a decrease in ductility of around 30% compared to the base metal is observed.


2021 ◽  
Vol 105 (1) ◽  
pp. 309-318
Author(s):  
Chien Nguyen ◽  
Emil Svoboda ◽  
Jan Sedlacek ◽  
Josef Sedlak ◽  
Ales Polzer ◽  
...  

This study was conducted to investigate the effect of hybrid surface treatment composed of plasma nitriding (PN) and chromium nitride (CrN) coating on the friction-wear properties, the adhesion strength of AISI 316L stainless steel. The CrN coatings with the thickness of 1.0 µm and 2.2 µm were formed on the surfaces of both substrates with plasma nitriding (PN/CrN coating) and without plasma nitriding (CrN coating). The plasma nitriding, CrN coatings, and the hybrid treatment improved markedly the friction-wear properties of the stainless steel. The plasma nitriding generated a hardened layer between the soft substrate and the thin hard coatings and improved markedly friction-wear properties of the CrN-coated stainless steel and the adhesion of the CrN coatings.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6790
Author(s):  
Viera Zatkalíková ◽  
Juraj Halanda ◽  
Dušan Vaňa ◽  
Milan Uhríčik ◽  
Lenka Markovičová ◽  
...  

Plasma immersion ion implantation (PIII) of nitrogen is low-temperature surface technology which enables the improvement of tribological properties without a deterioration of the corrosion behavior of austenitic stainless steels. In this paper the corrosion properties of PIII-treated AISI 316L stainless steel surfaces are evaluated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PP) and exposure immersion tests (all carried out in the 0.9 wt. % NaCl solution at 37 ± 0.5 °C) and compared with a non-treated surface. Results of the three performed independent corrosion tests consistently confirmed a significant increase in the corrosion resistance after two doses of PIII nitriding.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1788
Author(s):  
Tiehui Fang ◽  
Feng Cai

The effects of surface softening on fatigue behavior of AISI 316L stainless steel were investigated. Using cold-rolling and electromagnetic induction heating treatment, a gradient structure was fabricated on AISI 316L stainless steel within which the grain size decreased exponentially from micrometers to nanometers to mimic the surface softening. Stress-controlled fatigue tests were applied to both the gradient and homogeneous structures. Compared with the homogeneous sample, surface softening had no evident effect on fatigue behavior when the stress amplitude was greater than 400 MPa, but significantly deteriorated the fatigue behavior at stress amplitude ≤400 MPa. At high-stress amplitude, fatigue behavior is dominated by crack propagation. When the stress amplitude is lowered, strength reduction and stress concentration caused by surface softening accelerate crack initiation and propagation, resulting in an inferior fatigue behavior.


Sign in / Sign up

Export Citation Format

Share Document