high temperature exposure
Recently Published Documents


TOTAL DOCUMENTS

295
(FIVE YEARS 68)

H-INDEX

30
(FIVE YEARS 5)

Author(s):  
Mehrdad Abdi Moghadam ◽  
Ramezan Ali Izadifard

AbstractThe tensile strength of concrete has a great impact on the performance of concrete structures, especially for members exposed to high temperatures. The inclusion of steel fibers in concrete is one of the measures to retrieve the loss of tensile strength. The previous equations for the prediction of the tensile strength, are valid for conventional concrete and can predict the tensile strength after high-temperature exposure. Therefore, they are unsatisfactory for forecasting the tensile strength of plain and steel fiber reinforced concrete under high-temperature exposure. To establish a model that can effectively simulate the tensile strength of plain concrete, specimens with compressive strengths of 20–80 MPa are tested. Then by performing tensile strength tests on the specimens containing various content of steel fiber, an equation for prediction of the tensile strength at the ambient temperature is proposed. Meanwhile, the tensile strength tests are conducted at temperatures of 100–800 °C to develop a model for high-temperature exposure. The results indicate that an increase of compressive strength from 20 to 84 improves the tensile strength by 169.4%, and the incorporation of 0.25 and 0.5% of steel fibers can improve the tensile strength of normal concrete by 58.48 and 80.29% on average at the tested temperatures, respectively. Moreover, the proposed model is able to predict the tensile strength of normal and steel fiber reinforced concrete exposed to high temperatures accurately. This equation would help a wider application of the steel fibers in the construction industry with the risk of a fire accident.


2021 ◽  
Vol 8 ◽  
Author(s):  
Crystal J. McRae ◽  
Anderson B. Mayfield ◽  
Wen-Bin Huang ◽  
Isabelle M. Côté ◽  
Tung-Yung Fan

Climate change-induced increases in seawater temperature continue to impact coral reef ecosystems globally. There is a consequent need to characterize the responses of corals to thermal stress to understand the molecular processes underpinning these responses and identify hallmarks of resilience. Here we used an iTRAQ approach to compare the proteomes of adult corals (Pocillopora acuta) that had been thermally conditioned at a control (26°C) or elevated temperature (29.5°C) for three reproductive cycles, as well as the larvae released by these corals. We found that larvae responded more to high-temperature exposure at the protein level than their parents and that different proteins were affected between life stages; a single protein was up-regulated at high temperatures in both adults and their offspring, and its identity is currently unknown. Similarly, different cellular pathways were affected by high-temperature exposure between the coral hosts and their dinoflagellate endosymbionts; proteins involved in translation and protein trafficking were most likely to be affected by high-temperature exposure in the former, with photosynthesis being the most thermo-sensitive process in the latter. Collectively, these findings highlight the importance of considering both life stage and the composition of the coral holobiont when using molecular-scale data to model cellular processes associated with responses to future ocean warming.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4719
Author(s):  
Michał Pasztetnik ◽  
Roman Wróblewski

Concrete is susceptible to damage during and after high-temperature exposure (most frequently in fire). The concrete partial strength re-gain after a high-temperature exposure obtained by the rehydration process is undoubtedly an advantage of this construction material. However, to use fire-damaged concrete, one has to know why the strength deteriorates and what makes the partial re-gain. Within this framework, the paper aims to find what factors influence the strength re-gain. Moreover, an attempt is made to introduce a measure collecting various influences such as the modified heat accumulation factor—accounting only for that which is important for the process, the temperature decomposing cement paste (i.e., above 400 °C). Several factors, i.e., peak temperature, heating time and rate, cooling regime, post-fire re-curing, concrete composition, age of concrete at exposure, porosity, load level at exposure, and heat accumulation are presented by their influence on the relative residual compressive strength, i.e., a portion of initial strength that is obtained after temperature exposure and strength re-gain. Since the relative strength unifies various concretes, a more general assessment and discussion are presented based on the experimental results and correlation factors. As fundamental influences determining the residual strength, the heating time, peak temperature, cooling, or post-heating re-curing regimes are found with the load level at exposure being inadequately examined. This paper also shows the superiority of the modified heat accumulation factor, but the results obtained are not satisfactory, and additional experimental data are necessary to develop a theoretical model of the residual strength.


Sign in / Sign up

Export Citation Format

Share Document