Influence of grain size distribution on mechanical properties and HDI strengthening and work-hardening of gradient-structured materials

Author(s):  
Yindong Shi ◽  
Yiyi Wang ◽  
Wei Shang ◽  
Lina Wang ◽  
Xiliang Zhang ◽  
...  
2021 ◽  
Vol 1016 ◽  
pp. 499-508
Author(s):  
Christian Gruber ◽  
Peter Raninger ◽  
Martin Stockinger ◽  
Christian Bucher

The evolution of microstructural features such as local grain size and local grain size distribution are essential in view of the final physical and mechanical properties of the nickel base alloy 718 for aircraft parts forged in a multi-step production route. Due to increasing standards and the need of the prediction of fracture mechanical properties, a multi-class grain size model for a more detailed microstructure prediction is necessary. Therefore, a multi-class model considers the real initial non-uniform grain size distribution and structure of the pre-material at the beginning of the forging process, which affects the evolution of grain sizes during thermo-mechanical treatment and leads to different results than commonly used uniform grain structures. The initial distribution is defined by grain classes according the ASTM standard. It is shown that the presence of different classes and distributions of grains are as import as the applied strain, strain rate and temperature on dynamic, meta-dynamic and static recrystallization. Additionally, dissolution processes of delta phase and grain growth kinetics are included in the model to properly indicate the recrystallized fractions and represent the resulting multi-class microstructure. A series of simulations with different initial distributions is discussed and compared with examined forged samples in terms of the resulting microstructure for typical forging parameters. Based on these results the microstructure model can be used in combination with collected process data to predict the resulting properties and for the design of new aircraft parts.


2008 ◽  
Vol 140 ◽  
pp. 185-190 ◽  
Author(s):  
T.B. Tengen ◽  
Tomasz Wejrzanowski ◽  
R. Iwankiewicz ◽  
Krzysztof Jan Kurzydlowski

Predicting the properties of a material from knowledge of the internal microstructures is attracting significant interest in the fields of materials design and engineering. The most commonly used expression, known as Hall-Petch Relationship (HPR), reports on the relationship between the flow stress and the average grain size. However, there is much evidence that other statistical information that the grain size distribution in materials may have significant impact on the mechanical properties. These could even be more pronounced in the case of grains of the nanometer size, where the HPR is no longer valid and the Reverse-HPR is more applicable. This paper proposes a statistical model for the relationship between flow stress and grain size distribution. The model considered different deformation mechanisms and was used to predict mechanical properties of aluminium and copper. The results obtained with the model shows that the dispersion of grain size distribution plays an important role in the design of desirable mechanical properties. In particular, it was found that that the dependence of a material’s mechanical properties on grain size dispersion also follows the HPR to Inverse-HPR type of behaviour. The results also show that copper is more sensitive to changes in grain size distribution than aluminium.


2017 ◽  
Vol 20 (4) ◽  
pp. 1700849
Author(s):  
Bo Zheng ◽  
Xixun Shen ◽  
Huisheng Jiao ◽  
Qunjie Xu ◽  
Danhong Cheng

Sign in / Sign up

Export Citation Format

Share Document