Effect of liquid nitrogen and warm deformation on the microstructure and mechanical properties of 321-type metastable austenitic steel

Author(s):  
I. Yu Litovchenko ◽  
S.A. Akkuzin ◽  
N.A. Polekhina ◽  
K.V. Almaeva ◽  
E.N. Moskvichev ◽  
...  
2016 ◽  
Vol 35 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Zhiyuan Liang ◽  
Wanhua Sha ◽  
Qinxin Zhao ◽  
Chongbin Wang ◽  
Jianyong Wang ◽  
...  

AbstractThe effect of aging heat treatment on the microstructure and mechanical properties of 10Cr20Ni25Mo1.5NbN austenitic steel was investigated in this article. The microstructure was characterized by scanning electron microscopy, energy dispersive spectrometry and transmission electron microscopy. Results show that the microstructure of 10Cr20Ni25Mo1.5NbN austenitic is composed of austenite. This steel was strengthened by precipitates of secondary phases that were mainly M23C6 carbides and NbCrN nitrides. As aging treatment time increased, the tensile strength first rose (0–3,000 h) and then fell (3,000–5,000 h) due to the decrease of high density of dislocations. The impact absorbed energy decreased sharply, causing the sulfides to precipitate at the grain boundary. Therefore, the content of sulfur should be strictly controlled in the steelmaking process.


2006 ◽  
Vol 513 ◽  
pp. 35-50
Author(s):  
K. Sikorski ◽  
Agnieszka Szymańska ◽  
M. Sekuła ◽  
D. Kowalczyk ◽  
Jan Kazior ◽  
...  

The aim of the study was to obtain a ferritic-austenitic stainless steel through sintering of the mixture of austenitic steel AISI 316L powders with silicon in the amount ranging from 1 to 7%. The pressed mixtures were sintered at 1240oC for 60 minutes under hydrogen atmosphere. The results of the silicon admixture on the density, porosity, microstructure and mechanical properties of the sintered specimens are discussed.


2016 ◽  
Author(s):  
M. Tikhonova ◽  
P. Dolzhenko ◽  
R. Kaibyshev ◽  
A. Belyakov

Sign in / Sign up

Export Citation Format

Share Document