Crystalline structures, Raman, and Microwave dielectric properties of temperature stability Magnesium Niobate ceramics prepared by nanopowders

2021 ◽  
Vol 273 ◽  
pp. 115455
Author(s):  
Jianli Ma ◽  
Qing Cheng ◽  
Zhifen Fu ◽  
Zhongyi Yang
2022 ◽  
Vol 355 ◽  
pp. 01025
Author(s):  
Qin Zhang ◽  
Hua Su ◽  
Xiaoli Tang

Herein, the influence of Cu2+ substitution on the phase composition, bulk density, microstructures, and microwave dielectric properties of Li2CuxZn1−xSiO4 (0 ≤ x ≤ 0.06) ceramics prepared by a solid-state reaction were investigated. The results of XRD and mapping showed that Cu2+ substitution can avoid the influence of secondary phase on the properties of samples. According to the analysis of bulk density, microstructure and microwave dielectric properties, a proper amount of Cu substitution not only improved the sintering characteristics of Li2CuxZn1−xSiO4 ceramics, reduced the densification temperature from 1250 °C to 950 °C, but also increased the Q×f value. Furthermore, Cu2+ substitution also improved the temperature stability of the samples. Particularly, the Li2Cu0.04Zn0.96SiO4 ceramics sintered at 950 °C for 5 h possessed excellent microwave dielectric properties: εr = 5.624, Q×f = 12,764 GHz, and τf = −77 ppm/°C, exhibiting a potential for the low temperature co-fired ceramic applications.


2007 ◽  
Vol 124-126 ◽  
pp. 173-176 ◽  
Author(s):  
Dong Wan Kim ◽  
Kug Sun Hong

For low temperature cofired ceramic (LTCC) materials to achieve increase functionality, as well as low loss and moderate dielectric constant, it is essential to achieve the temperature stability of the resonant frequency. Facing several empirical approaches toward tuning the temperature coefficient of the resonant frequency (τf) through the formation of mixtures or a solid-solution between the two end members with opposite signs of τf, which result in higher dielectric loss, we took a closer look at the texture engineering that determines the anisotropic dielectric properties in barium niobate ceramics. We demonstrate the advantage of texture engineering for microwave dielectric properties including temperature stability by control of crystallographic orientation. Also, the monoclinic rare earth niobates are investigated as novel microwave dielectric materials. Furthermore, the stable τf of the rare earth niobates could be efficiently explained through the ferroelastic domain engineering related to phase transformation.


2020 ◽  
Vol 263 ◽  
pp. 120107
Author(s):  
Romain Damez ◽  
Philippe Artillan ◽  
Arthur Hellouin de Menibus ◽  
Cédric Bermond ◽  
Pascal Xavier

Sign in / Sign up

Export Citation Format

Share Document