scholarly journals Effects of Cu substitution on microstructures and microwave dielectric properties of Li2ZnSiO4 ceramics

2022 ◽  
Vol 355 ◽  
pp. 01025
Author(s):  
Qin Zhang ◽  
Hua Su ◽  
Xiaoli Tang

Herein, the influence of Cu2+ substitution on the phase composition, bulk density, microstructures, and microwave dielectric properties of Li2CuxZn1−xSiO4 (0 ≤ x ≤ 0.06) ceramics prepared by a solid-state reaction were investigated. The results of XRD and mapping showed that Cu2+ substitution can avoid the influence of secondary phase on the properties of samples. According to the analysis of bulk density, microstructure and microwave dielectric properties, a proper amount of Cu substitution not only improved the sintering characteristics of Li2CuxZn1−xSiO4 ceramics, reduced the densification temperature from 1250 °C to 950 °C, but also increased the Q×f value. Furthermore, Cu2+ substitution also improved the temperature stability of the samples. Particularly, the Li2Cu0.04Zn0.96SiO4 ceramics sintered at 950 °C for 5 h possessed excellent microwave dielectric properties: εr = 5.624, Q×f = 12,764 GHz, and τf = −77 ppm/°C, exhibiting a potential for the low temperature co-fired ceramic applications.

Author(s):  
Haiquan Wang ◽  
Shixuan Li ◽  
Kangguo Wang ◽  
Xiuli Chen ◽  
Huanfu Zhou

AbstractThis study investigates the bulk density, sintering behaviour, and microwave dielectric properties of the MgO-2B2O3 series ceramics synthesised by solid-state reaction. According to the X-ray diffraction and microstructural analyses, the as-prepared MgO-2B2O3 ceramics possess a single-phase structure with a rod-like morphology. The effects of different quantities of H3BO3 and BaCu(B2O5) (BCB) on the bulk density, sintering behaviour, and microwave dielectric properties of the MgO-2B2O3 ceramics were investigated. Accordingly, the optimal sintering temperature was obtained by adding 30 wt% H3BO3 and 8 wt% BCB. We also reduced the sintering temperature to 825 °C. Furthermore, the addition of 40 wt% H3BO3 and 4 wt% BCB increased the quality factor, permittivity, and temperature coefficient of resonance frequency of MgO-2B2O3 to 44,306 GHz (at 15 GHz), 5.1, and −32 ppm/°C, respectively. These properties make MgO-2B2O3 a viable low-temperature co-fired ceramic with broad applications in microwave dielectrics.


2018 ◽  
Vol 750 ◽  
pp. 996-1002 ◽  
Author(s):  
Xiao-Qiang Song ◽  
Kang Du ◽  
Xian-Zhe Zhang ◽  
Jie Li ◽  
Wen-Zhong Lu ◽  
...  

2015 ◽  
Vol 26 (8) ◽  
pp. 5892-5895 ◽  
Author(s):  
Liang Fang ◽  
Zhenhai Wei ◽  
Huanhuan Guo ◽  
Yihua Sun ◽  
Ying Tang ◽  
...  

2015 ◽  
Vol 33 (1) ◽  
pp. 95-99 ◽  
Author(s):  
Abdul Manan ◽  
Dil Nawaz Khan ◽  
Atta Ullah ◽  
Arbab Safeer Ahmad

AbstractMg0:95Ni0:05Ti0:98Zr0:02O3 ceramics was prepared via conventional solid-state mixed-oxide route. The phase, microstructure and microwave dielectric properties of the sintered samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and a vector network analyzer. The microstructure comprised of circular and elongated plate-like grains. The semi quantitative analysis (EDS) of the circular and elongated grains revealed the existence of Mg0:95Ni0:05T2O5 as a secondary phase along with the parent Mg0:95Ni0:05Ti0:98Zr0:02O3 phase, which was consistent with the XRD findings. In the present study, εr ~17.1, Qufo~195855 ± 2550 GHz and τf ~ -46 ppm/K was achieved for the synthesized Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics sintered at 1325 °C for 4 h.


2014 ◽  
Vol 40 (7) ◽  
pp. 10531-10535 ◽  
Author(s):  
Zhu Zhang ◽  
Hua Su ◽  
Xiaoli Tang ◽  
Huaiwu Zhang ◽  
Tingchuan Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document