Phosphatidylserine enhances osteogenic differentiation in human mesenchymal stem cells via ERK signal pathways

2013 ◽  
Vol 33 (3) ◽  
pp. 1783-1788 ◽  
Author(s):  
Caixia Xu ◽  
Zebin Zheng ◽  
LiMing Fang ◽  
Naru Zhao ◽  
Zihong Lin ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Nicola Giuliani ◽  
Gina Lisignoli ◽  
Marina Magnani ◽  
Costantina Racano ◽  
Marina Bolzoni ◽  
...  

Human mesenchymal stem cells (hMSCs) are pluripotent adult stem cells capable of being differentiated into osteoblasts, adipocytes, and chondrocytes. The osteogenic differentiation of hMSCs is regulated either by systemic hormones or by local growth factors able to induce specific intracellular signal pathways that modify the expression and activity of several transcription factors. Runt-related transcription factor 2 (Runx2) and Wnt signaling-related molecules are the major factors critically involved in the osteogenic differentiation process by hMSCs, and SRY-related high-mobility-group (HMG) box transcription factor 9 (SOX9) is involved in the chondrogenic one. hMSCs have generated a great interest in the field of regenerative medicine, particularly in bone regeneration. In this paper, we focused our attention on the molecular mechanisms involved in osteogenic and chondrogenic differentiation of hMSC, and the potential clinical use of hMSCs in osteoarticular pediatric disease characterized by fracture nonunion and pseudarthrosis.


2019 ◽  
Author(s):  
Leiluo Yang ◽  
Qing Li ◽  
Junhong Zhang ◽  
Pengcheng Li ◽  
Chaoliang Wang ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 927
Author(s):  
Ki-Taek Lim ◽  
Dinesh-K. Patel ◽  
Sayan-Deb Dutta ◽  
Keya Ganguly

Human mesenchymal stem cells (hMSCs) have the potential to differentiate into different types of mesodermal tissues. In vitro proliferation and differentiation of hMSCs are necessary for bone regeneration in tissue engineering. The present study aimed to design and develop a fluid flow mechanically-assisted cartridge device to enhance the osteogenic differentiation of hMSCs. We used the fluorescence-activated cell-sorting method to analyze the multipotent properties of hMSCs and found that the cultured cells retained their stemness potential. We also evaluated the cell viabilities of the cultured cells via water-soluble tetrazolium salt 1 (WST-1) assay under different rates of flow (0.035, 0.21, and 0.35 mL/min) and static conditions and found that the cell growth rate was approximately 12% higher in the 0.035 mL/min flow condition than the other conditions. Moreover, the cultured cells were healthy and adhered properly to the culture substrate. Enhanced mineralization and alkaline phosphatase activity were also observed under different perfusion conditions compared to the static conditions, indicating that the applied conditions play important roles in the proliferation and differentiation of hMSCs. Furthermore, we determined the expression levels of osteogenesis-related genes, including the runt-related protein 2 (Runx2), collagen type I (Col1), osteopontin (OPN), and osteocalcin (OCN), under various perfusion vis-à-vis static conditions and found that they were significantly affected by the applied conditions. Furthermore, the fluorescence intensities of OCN and OPN osteogenic gene markers were found to be enhanced in the 0.035 mL/min flow condition compared to the control, indicating that it was a suitable condition for osteogenic differentiation. Taken together, the findings of this study reveal that the developed cartridge device promotes the proliferation and differentiation of hMSCs and can potentially be used in the field of tissue engineering.


2021 ◽  
Vol 13 (6) ◽  
pp. 7051-7059
Author(s):  
Yingnan Zhang ◽  
Changhao Fang ◽  
Shuce Zhang ◽  
Robert E. Campbell ◽  
Michael J. Serpe

Sign in / Sign up

Export Citation Format

Share Document