Anomalous dissolution behavior of celecoxib in PVP/Isomalt solid dispersions prepared using spray drier

2017 ◽  
Vol 72 ◽  
pp. 501-511 ◽  
Author(s):  
Roya Ghanavati ◽  
Azade Taheri ◽  
Alireza Homayouni
Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 548 ◽  
Author(s):  
Serena Bertoni ◽  
Beatrice Albertini ◽  
Nadia Passerini

Delivery of poorly water soluble active pharmaceutical ingredients (APIs) by semi-crystalline solid dispersions prepared by spray congealing in form of microparticles (MPs) is an emerging method to increase their oral bioavailability. In this study, solid dispersions based on hydrophilic Gelucires® (Gelucire® 50/13 and Gelucire® 48/16 in different ratio) of three BCS class II model compounds (carbamazepine, CBZ, tolbutamide, TBM, and cinnarizine, CIN) having different physicochemical properties (logP, pKa, Tm) were produced by spray congealing process. The obtained MPs were investigated in terms of morphology, particles size, drug content, solid state properties, drug-carrier interactions, solubility, and dissolution performances. The solid-state characterization showed that the properties of the incorporated drug had a profound influence on the structure of the obtained solid dispersion: CBZ recrystallized in a different polymorphic form, TBM crystallinity was significantly reduced as a result of specific interactions with the carrier, while smaller crystals were observed in case of CIN. The in vitro tests suggested that the drug solubility was mainly influenced by carrier composition, while the drug dissolution behavior was affected by the API solid state in the MPs after the spray congealing process. Among the tested APIs, TBM-Gelucire dispersions showed the highest enhancement in drug dissolution as a result of the reduced drug crystallinity.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiaoyu Sui ◽  
Yan Chu ◽  
Jie Zhang ◽  
Honglian Zhang ◽  
Huiyu Wang ◽  
...  

The effect of polyvinylpyrrolidone (PVP) as glycyrrhetic acid (GA) solid dispersions carrier at different molecular weights on the dissolution behavior and physicochemical properties was investigated. PVP-GA-SDs prepared with all four molecular weight PVPs displayed good enhancement of dissolution rate and equilibrium solubility compared with pure drug and corresponding physical mixtures. The results showed that the enhancement effect of molecular weight on dissolution rate and equilibrium solubility follows PVP   K 30 > PVP   K 60 > PVP   K 17 > PVP   K 15 . In addition, the dissolution rate and solubility of the SDs with a carrier-drug ratio of 8 : 1 were better than the samples of 4 : 1. The DSC and XRD patterns showed that the crystallization of GA in SDs prepared by PVP K30 and PVP K60 was significantly inhibited, and both were transformed to amorphous. Based on FTIR and Raman detection, a hydrogen-bond between PVP and drug molecules is formed. SEM results showed that there were no significant differences in the appearance of SDs prepared with four PVPs, and no crystalline morphology of GA was seen. In conclusion, the findings of this study demonstrated that the dissolution performance of the PVP-GA-SDs prepared by the solvent method is related to the molecular weight of PVP, and the change in the molecular weight of PVP does not cause a monotonic change in dissolution of GA. The samples with PVP K30 as the carrier have the best dissolution performance.


2012 ◽  
Vol 11 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Md Abdullah Al Masum ◽  
Florida Sharmin ◽  
S M Ashraful Islam ◽  
Md Selim Reza

In this study solid dispersions (SDs) of ibuprofen were prepared by melt dispersion technique using macrogol 4000 and macrogol 6000 as carrier. Physical mixtures (PMs) of ibuprofen were also prepared with the same carrier and in the same drug-carrier ratio (1:0.5, 1:1 and 1:1.5) to compare the dissolution profile. The solid dispersions and physical mixtures were investigated for drug loading, saturation solubility and dissolution behavior. Saturation solubility study was carried out in phosphate buffer (pH 7.2), 0.1 N HCl solution and distilled water. Solid dispersions were found effective to enhance the solubility of ibuprofen significantly in all the media. Dissolution test was carried out in two different media, phosphate buffer (pH 7.2) and 0.1 N HCl. Solid dispersion containing macrogol 6000 at the ratio of 1:1.5 (drug: carrier) showed faster and higher drug release and was found to be most effective among all the solid dispersions. Drug carrier interactions were studied by comparing Fourier Transform Infrared Spectroscopy (FT-IR) of solid dispersions with pure drug which revealed that the SDs were stable. So, solid dispersion may be an effective technique to enhance dissolution rate of ibuprofen. DOI: http://dx.doi.org/10.3329/dujps.v11i1.12480 Dhaka Univ. J. Pharm. Sci. 11(1): 1-6, 2012 (June)


2007 ◽  
Vol 96 (2) ◽  
pp. 294-304 ◽  
Author(s):  
Sudha R. Vippagunta ◽  
Zeren Wang ◽  
Stefanie Hornung ◽  
Steven L. Krill

ACS Omega ◽  
2020 ◽  
Vol 5 (17) ◽  
pp. 9690-9701
Author(s):  
Kaushalendra Chaturvedi ◽  
Harsh S. Shah ◽  
Kajal Nahar ◽  
Rutesh Dave ◽  
Kenneth R. Morris

Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 142 ◽  
Author(s):  
Dan Zhang ◽  
Yung-Chi Lee ◽  
Zaher Shabani ◽  
Celeste Frankenfeld Lamm ◽  
Wei Zhu ◽  
...  

The development of a weakly basic compound is often challenging due to changes in pH that the drug experiences throughout the gastrointestinal tract. As the drug transitions from the low pH of the stomach to the higher pH of the small intestine, drug solubility decreases. A stomach with a higher pH, caused by food or achlorhydric conditions brought about by certain medications, decreases even the initial solubility. This decreased drug solubility is reflected in lower in vivo exposures. In many cases, a solubility-enabling approach is needed to counteract the effect of gastrointestinal pH changes. Solid dispersions of amorphous drug in a polymer matrix have been demonstrated to be an effective tool to enhance bioavailability, with the potential to mitigate the food and achlorhydric effects frequently observed with conventional formulations. Because solid dispersions are in a metastable state, they are particularly sensitive to processing routes that may control particle attributes, stability, drug release profile, and bioperformance. A better understanding of the impacts of processing routes on the solid dispersion properties will not only enhance our ability to control the product properties, but also lower development risks. In this study, a weakly basic compound with greatly reduced solubility in higher pHs was incorporated into a solid dispersion via both spray drying and hot melt extrusion. The properties of the solid dispersion via these two processing routes were compared, and the impact on dissolution behavior and in vivo performance of the dispersions was investigated.


Sign in / Sign up

Export Citation Format

Share Document