Quantum well intermixing of tensile strain GaInP quantum well structures induced by ion implantation and thermal annealing

2022 ◽  
Vol 138 ◽  
pp. 106306
Author(s):  
Tao Lin ◽  
Ya-ning Li ◽  
Jia-nan Xie ◽  
Ze-kun Ma ◽  
Rong-jin Zhao ◽  
...  
2000 ◽  
Vol 647 ◽  
Author(s):  
Todd W. Simpson ◽  
Paul G. Piva ◽  
Ian V. Mitchell

AbstractIon implantation followed by rapid thermal annealing is used to induce layer intermixing and thus selectively blue-shift the emission wavelength of InP-based quantum well hetero- structures. The intermixing is greatly enhanced over thermal intermixing due to the supersaturation of defects. The magnitude of the observed blue-shift has been studied previously as a function of ion fluence and ion mass: the dependence on ion mass is well established, with heavier ions producing a larger shift. We show here that chemical effects can also play a significant role in determining the induced blue-shift. Data are presented from the implantation of the similar mass ions; aluminum (m~27), silicon (m~28) and phosphorus (m~31). The P- induced blue shift displays a monotonic increase with fluence, consistent with previous studies; however, the fluence dependence of Al- and Si-induced blue-shifts both deviate significantly from the behaviour for P. These results have important implications for attempts to scale intermixing behaviour with ion mass.


1989 ◽  
Vol 66 (5) ◽  
pp. 2104-2107 ◽  
Author(s):  
B. Elman ◽  
Emil S. Koteles ◽  
P. Melman ◽  
C. A. Armiento

2002 ◽  
Vol 8 (4) ◽  
pp. 870-879 ◽  
Author(s):  
V. Aimez ◽  
J. Beauvais ◽  
J. Beerens ◽  
D. Morris ◽  
H.S. Lim ◽  
...  

1999 ◽  
Vol 4 (S1) ◽  
pp. 642-647
Author(s):  
Michael C.Y. Chan ◽  
Kwok-On Tsang ◽  
E. Herbert Li ◽  
Steven P. Denbaars

Quantum well (QW) material engineering has attracted a considerable amount of interest from many people because of its ability to produce a number of optoelectronic devices. QW composition intermixing is a thermal induced interdiffusion of the constituent atoms through the hetero-interface. The intermixing process is an attractive way to achieve the modification of the QW band structure. It is known that the band structure is a fundamental determinant for such electronic and optical properties of materials as the optical gain, the refractive index and the absorption. During the process, the as-grown square-QW compositional profile is modified to a graded profile, thereby altering the confinement profile and the subband structure in the QW. The blue-shifting of the wavelength in the intermixed QW structure is found in this process.In recent years, III-nitride semiconductors have attracted much attention. This is mainly due to their large bandgap range from 1.89eV (wurtzite InN) to 3.44eV (wurtzite GaN). InGaN/GaN quantum well structures have been used to achieve high lumens blue and green light emitting diodes. Such structures also facilitate the production of full colour LED displays by complementing the colour spectrum of available LEDs.In this paper, the effects of thermal annealing on the strained-layer InGaN/GaN QW will be presented. The effects of intermixing on the confinement potential of InGaN/GaN QWs have been theoretically analysed, with sublattices interdiffusion as the basis. This process is described by Fick’s law, with constant diffusion coefficients in both the well and the barrier layers. The diffusion coefficients depend on the annealing temperature, time and the activation energy of constituent atoms. The optical properties of intermixed InGaN/GaN QW structure of different interdiffusion rates have been theoretically analyzed for applications of novel optical devices. The photoluminescence studies and the intermixed QW modeling have been used to understand the effects of intermixing.


2006 ◽  
Vol 21 (3) ◽  
pp. L25-L28 ◽  
Author(s):  
V A Coleman ◽  
M Buda ◽  
H H Tan ◽  
C Jagadish ◽  
M R Phillips ◽  
...  

2006 ◽  
Vol 21 (4) ◽  
pp. 105-107
Author(s):  
Peng Jucun ◽  
Wu Boying ◽  
Chen Jie ◽  
Zhao Jie ◽  
Wang Yongchen

1990 ◽  
Vol 67 (4) ◽  
pp. 1805-1813 ◽  
Author(s):  
H. Leier ◽  
A. Forchel ◽  
G. Hörcher ◽  
J. Hommel ◽  
S. Bayer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document