In-vitro release study through novel graphene oxide aided alginate based pH-sensitive drug carrier for gastrointestinal tract

2020 ◽  
pp. 101737
Author(s):  
Iman Sengupta ◽  
Suddhapalli SS Sharat Kumar ◽  
Kaveri Gupta ◽  
Sudipto Chakraborty
Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 109 ◽  
Author(s):  
Dasan Jaya Seema ◽  
Bullo Saifullah ◽  
Mariadoss Selvanayagam ◽  
Sivapragasam Gothai ◽  
Mohd Hussein ◽  
...  

In this study anticancer nanocomposite was designed using graphene oxide (GO) as nanocarrier and Phenethyl isothiocyanate (PEITC) as anticancer agent. The designed formulation was characterized in detailed with XRD, Raman, UV/Vis, FTIR, DLS and TEM etc. The designed anticancer nanocomposite showed much better anticancer activity against liver cancer HepG2 cells compared to the free drug PEITC and was also found to be nontoxic to the normal 3T3 cells. In vitro release of the drug from the anticancer nanocomposite formulation was found to be sustained in human body simulated phosphate buffer saline (PBS) solution of pH 7.4 (blood pH) and pH 4.8 (intracellular lysosomal pH). This study suggests that GO could be developed as an efficient drug carrier to conjugate with PEITC for pharmaceutical applications in cancer chemotherapies.


Author(s):  
Chukwuebuka Umeyor ◽  
Uchechukwu Nnadozie ◽  
Anthony Attama

This study seeks to formulate and evaluate a solid lipid nanoparticle-based, solidified micellar carrier system for oral delivery of cefepime. Cefepime has enjoyed a lot of therapeutic usage in the treatment of susceptible bacterial infections; however, its use is limited due to its administration as an injection only with poor patient compliance. Since oral drug administration encourage high patient compliance with resultant effect in improved therapy, cefepime was formulated as solid lipid microparticles for oral delivery using the concept of solidified micellar carrier system. The carrier system was evaluated based on particle yield, particle size and morphology, encapsulation efficiency (EE %), and thermal analysis using differential scanning calorimeter (DSC). Preliminary microbiological studies were done using gram positive and negative bacteria. In vitro release study was performed using biorelevant media, while in vivo release study was performed in white albino rats. The yield of solid lipid microparticles (SLM) ranged from 84.2 – 98.0 %. The SLM were spherical with size ranges of 3.8 ± 1.2 to 42.0 ± 1.4 µm. The EE % calculated ranged from 83.6 – 94.8 %. Thermal analysis showed that SLM was less crystalline with high potential for drug entrapment. Microbial studies showed that cefepime retained its broad spectrum anti-bacterial activity. In vitro release showed sustained release of cefepime from SLM, and in vivo release study showed high concentration of cefepime released in the plasma of study rats. The study showed that smart engineering of solidified micellar carrier system could be used to improve oral delivery of cefepime.


Author(s):  
C Suja ◽  
Sismy C

The goal of this study was to formulate and evaluate norfloxacin sustained release tablets. Norfloxacin sustained release tablets were prepared by wet granulation method using two polymers such as HPMC K 100 M (hydrophilic polymer) and guar gum (natural polymer) and with three polymer ratios (0.5, 1.0 and 1.5). The prepared granules were evaluated to preformulation studies such as angle of repose, bulk density, tapped density, bulkiness, compressibility index and Hauser’s ratio. All the parameters shows that the granules having good flow properties. Then the formulated tablets were taken to evaluation studies such as hardness, weight variation, friability, drug content and thickness. All the parameters were within the acceptable limits. IR spectral analysis showed that there was no interaction between the drug and polymers. The in vitro release study was performed in phosphate buffer pH 7.4 at 293 nm. The in vitro release study showed that if the polymer ratio is increased, then the release of the drug is prolonged. HPMC K 100M shows a prolonged release when compared to guar gum.


2013 ◽  
Vol 7 (5) ◽  
pp. 414-420 ◽  
Author(s):  
Amolkumar B. Lokhande ◽  
Satyendra Mishra ◽  
Ravindra D. Kulkarni ◽  
Jitendra B. Naik

2001 ◽  
Vol 27 (10) ◽  
pp. 1107-1114 ◽  
Author(s):  
Mahaveer D. Kurkuri ◽  
Anandrao R. Kulkarni ◽  
Mahadevappa Y. Kariduraganavar ◽  
Tejraj M. Aminabhavi

BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 3615-3629 ◽  
Author(s):  
Yanli Li ◽  
Yucheng Feng ◽  
Jun Jing ◽  
Fei Yang

A novel magnetic anticancer drug carrier based on cellulose, guar gum, and Fe3O4 hydrogel microspheres was synthesized by chemical crosslinking. These microspheres were crosslinked with epoxy chloropropane and loaded with 5-fluorouracil (5-fu). The effect of the ratio of cellulose to guar gum on bead size, drug loading, and in vitro release behaviors were investigated. The influence of the magnetic content on drug loading and in vitro release behaviors were also evaluated. The magnetic hydrogel microspheres were characterized via an optical microscope, Fourier transform infrared spectroscopy, swelling behavior analysis, vibrating sample magnetometer, and ultraviolet absorption spectroscopy. The results showed that as the ratio of cellulose to guar gum increased from 3:1 to 5:1, the particle size increased from 395 to 459 um. Moreover, the drug loading capacity, encapsulation efficiency, and in vitro release behavior were influenced by the ratio of cellulose/guar gum and Fe3O4 content. Finally, the Fe3O4 particle had an adsorption effect on the drug, thereby reducing the maximum cumulative release.


Sign in / Sign up

Export Citation Format

Share Document