Hydrogenation aging mechanisms of a porous composite with polyethylene as matrix and 1,4-bis(phenylethynyl)benzene as hydrogen getter

2021 ◽  
Vol 29 ◽  
pp. 102876
Author(s):  
Chuanxi Tan ◽  
Jinlong Pan ◽  
Yingying Wang ◽  
Chenji He ◽  
Hui Dong ◽  
...  
2021 ◽  
Vol 41 ◽  
pp. 102812
Author(s):  
Simone Casino ◽  
Thomas Beuse ◽  
Verena Küpers ◽  
Markus Börner ◽  
Tobias Gallasch ◽  
...  

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Aliabbas Zia ◽  
Ali Mohammad Pourbagher-Shahri ◽  
Tahereh Farkhondeh ◽  
Saeed Samarghandian

AbstractAging is the leading risk factor for several age-associated diseases such as neurodegenerative diseases. Understanding the biology of aging mechanisms is essential to the pursuit of brain health. In this regard, brain aging is defined by a gradual decrease in neurophysiological functions, impaired adaptive neuroplasticity, dysregulation of neuronal Ca2+ homeostasis, neuroinflammation, and oxidatively modified molecules and organelles. Numerous pathways lead to brain aging, including increased oxidative stress, inflammation, disturbances in energy metabolism such as deregulated autophagy, mitochondrial dysfunction, and IGF-1, mTOR, ROS, AMPK, SIRTs, and p53 as central modulators of the metabolic control, connecting aging to the pathways, which lead to neurodegenerative disorders. Also, calorie restriction (CR), physical exercise, and mental activities can extend lifespan and increase nervous system resistance to age-associated neurodegenerative diseases. The neuroprotective effect of CR involves increased protection against ROS generation, maintenance of cellular Ca2+ homeostasis, and inhibition of apoptosis. The recent evidence about the modem molecular and cellular methods in neurobiology to brain aging is exhibiting a significant potential in brain cells for adaptation to aging and resistance to neurodegenerative disorders.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3879
Author(s):  
Hong-Gang Pan ◽  
Yun-Shi Wu ◽  
Jian-Nan Zhou ◽  
Yan-Ming Fu ◽  
Xin Liang ◽  
...  

Plates are commonly used in many engineering disciplines, including aerospace. With the continuous improvement in the capacity of high value-added airplanes, large transport aircrafts, and fighter planes that have high strength, high toughness, and corrosion resistance have gradually become the development direction of airplane plate structure production and research. The strength and stability of metal plate structures can be improved by adding reinforced materials. This paper studies graphene platelets (GPLs) reinforced with a free vibration porous composite plate. The porous plate is constructed with a multi-layer model in a metal matrix containing uniform or non-uniformly distributed open-cell internal pores. Considering the random and directional arrangement of graphene platelets in the matrix, the elastic modulus of graphene composites was estimated using the Halpin–Tsai micromechanical model, and the vibration frequencies of graphene composite were calculated using the differential quadrature method. The effects of the total number of layers, GPL distribution pattern, porosity coefficient, GPL weight fraction, and boundary conditions on the free vibration frequency of GPLs reinforced porous composite plates are studied, and the accuracy of the conclusions are verified by the finite element software.


Sign in / Sign up

Export Citation Format

Share Document