brain health
Recently Published Documents


TOTAL DOCUMENTS

1201
(FIVE YEARS 718)

H-INDEX

43
(FIVE YEARS 16)

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Thomas G. Di Virgilio ◽  
Magdalena Ietswaart ◽  
Ragul Selvamoorthy ◽  
Angus M. Hunter

Abstract Background The suitability of corticomotor inhibition and corticospinal excitability to measure brain health outcomes and recovery of sport-related head impact (concussion and subconcussion) depends on good inter-day reliability, which is evaluated in this study. Transcranial magnetic stimulation (TMS) reliability in soccer players is assessed by comparing soccer players, for whom reliability on this measure may be reduced due to exposure to head impacts, to generally active individuals not engaged in contact sport. Methods TMS-derived corticomotor inhibition and corticospinal excitability were recorded from the rectus femoris muscle during two testing sessions, spaced 1–2 weeks apart in 19 soccer players (SOC—age 22 ± 3 years) and 20 generally active (CON—age 24 ± 4 years) healthy volunteers. Inter-day reliability between the two time points was quantified by using intra-class correlation coefficients (ICC). Intra-group reliability and group differences on actual measurement values were also explored. Results Good inter-day reliability was evident for corticomotor inhibition (ICCSOC = 0.61; ICCCON = 0.70) and corticospinal excitability (ICCSOC = 0.59; ICCCON = 0.70) in both generally active individuals and soccer players routinely exposed to sport-related head impacts. Corticomotor inhibition showed lower coefficients of variation than excitability for both groups (InhibSOC = 15.2%; InhibCON = 9.7%; ExcitabSOC = 41.6%; ExcitabCON = 39.5%). No group differences between soccer players and generally active individuals were found on the corticomotor inhibition value (p > 0.05), but levels of corticospinal excitability were significantly lower in soccer players (45.1 ± 20.8 vs 85.4 ± 6.2%Mmax, p < 0.0001). Corticomotor inhibition also showed excellent inter-rater reliability (ICC = 0.87). Conclusions Corticomotor inhibition and corticospinal excitability are stable and maintain good degrees of reliability when assessed over different days in soccer players, despite their routine exposure to head impacts. However, based on intra-group reliability and group differences of the levels of excitability, we conclude that corticomotor inhibition is best suited for the evaluation of neuromuscular alterations associated with head impacts in contact sports.


eFood ◽  
2022 ◽  
Author(s):  
Min Wang ◽  
Congcong Gong ◽  
William Amakye ◽  
Jiaoyan Ren

Inhibiting β-amyloid (Aβ) aggregation is of significance in finding potential candidates for Alzheimer’s disease (AD) treatment. Accumulating evidence suggests that nutrition is important for improving cognition and reducing AD risk. Walnut has been widely used as a functional food for brain health; however the underlying mechanisms remain unknown. Here, we investigated the molecular level alteration in Arctic mutant Aβ42 induced aggregation cell model by RNA-seq and iTRAQ approaches after walnut-derived peptides Pro-Pro-Lys-Asn-Trp (PW5) and Trp-Pro-Pro-Lys-Asn (WN5) interventions. PW5 or WN5 could significantly decrease abnormal Aβ42 aggregates. However, resultant alterations in transcriptome (substantially unchanged) were inconsistent with proteomic data (marked change). Proteomic analysis revealed 184 and 194 differentially expressed proteins unique to PW5 and WN5 treatment, respectively, for inhibiting Aβ42 protein production or increasing protein degradation via the mismatch repair pathways. Our study provides new insights into the effectiveness of food-derived peptides for anti-Aβ42 aggregation in AD.


Stroke ◽  
2022 ◽  
Author(s):  
Saima Hilal ◽  
Carol Brayne

Brain health as expressed in our mental health and occurrence of specific disorders such as dementia and stroke is vitally important to quality of life, functional independence, and risk of institutionalization. Maintaining brain health is, therefore, a societal imperative, and public health challenge, from prevention of acquisition of brain disorders, through protection and risk reduction to supporting those with such disorders through effective societal and system approaches. To identify possible mechanisms that explain the differential effect of potentially modifiable risk factors, and factors that may mitigate risk, a life course approach is needed. This is key to understanding how poor health can accumulate from the earliest life stages. It also allows us to integrate and investigate key material, behavioral, and psychological factors that generate health inequalities within and across communities and societies. This review provides a narrative on how brain health is intimately linked to wider health determinants, thus importance for clinicians and societies alike. There is compelling evidence accumulated from research over decades that socioeconomic status, higher education, and healthy lifestyle extend life and compress major morbidities into later life. Brain health is part of this, but collective action has been limited, partly because of the separation of disciplines and focus on highly reductionist approaches in that clinicians and associated research have focused more on mitigation and early detection of specific diseases. However, clinicians could be part of the drive for better brain health for all society to support life courses that have more protection and less risk. There is evidence of change in such risks for conditions such as stroke and dementia across generations. The evidence points to the importance of starting with parental health and life course inequalities as a central focus.


Stroke ◽  
2022 ◽  
Author(s):  
Miia Kivipelto ◽  
Katie Palmer ◽  
Tina D. Hoang ◽  
Kristine Yaffe

There is robust evidence linking vascular health to brain health, cognition, and dementia. In this article, we present evidence from trials of vascular risk factor treatment on cognitive outcomes. We summarize findings from randomized controlled trials of antihypertensives, lipid-lowering medications, diabetes treatments (including antidiabetic drugs versus placebo, and intensive versus standard glycemic control), and multidomain interventions (that target several domains simultaneously such as control of vascular and metabolic factors, nutrition, physical activity, and cognitive stimulation etc). We report that evidence on the efficacy of vascular risk reduction interventions is promising, but not yet conclusive, and several methodological limitations hamper interpretation. Evidence mainly comes from high-income countries and, as cognition and dementia have not been the primary outcomes of many trials, evaluation of cognitive changes have often been limited. As the cognitive aging process occurs over decades, it is unclear whether treatment during the late-life window is optimal for dementia prevention, yet older individuals have been the target of most trials thus far. Further, many trials have not been powered to explore interactions with modifiers such as age, race, and apolipoprotein E, even though sub-analyses from some trials indicate that the success of interventions differs depending on patient characteristics. Due to the complex multifactorial etiology of dementia, and variations in risk factors between individuals, multidomain interventions targeting several risk factors and mechanisms are likely to be needed and the long-term sustainability of preventive interventions will require personalized approaches that could be facilitated by digital health tools. This is especially relevant during the coronavirus disease 2019 (COVID-19) pandemic, where intervention strategies will need to be adapted to the new normal, when face-to-face engagement with participants is limited and public health measures may create changes in lifestyle that affect individuals’ vascular risk profiles and subsequent risk of cognitive decline.


Stroke ◽  
2022 ◽  
Author(s):  
Rebecca F. Gottesman ◽  
Sudha Seshadri

Although a relationship between traditional cardiovascular risk factors and stroke has long been recognized, these risk factors likely play a role in other aspects of brain health. Clinical stroke is only the tip of the iceberg of vascular brain injury that includes covert infarcts, white matter hyperintensities, and microbleeds. Furthermore, an individual’s risk for not only stroke but poor brain health includes not only these traditional vascular risk factors but also lifestyle and genetic factors. The purpose of this narrative review is to summarize the state of the evidence on traditional and nontraditional vascular risk factors and their contributions to brain health. Additionally, we will review important modifiers that interact with these risk factors to increase, or, in some cases, reduce risk of adverse brain health outcomes, with an emphasis on genes and biomarkers associated with Alzheimer disease. Finally, we will consider the importance of social determinants of health in brain health outcomes.


Stroke ◽  
2022 ◽  
Author(s):  
Katherine T. Mun ◽  
Jason D. Hinman

Inflammation and its myriad pathways are now recognized to play both causal and consequential roles in vascular brain health. From acting as a trigger for vascular brain injury, as evidenced by the coronavirus disease 2019 (COVID-19) pandemic, to steadily increasing the risk for chronic cerebrovascular disease, distinct inflammatory cascades play differential roles in varying states of cerebrovascular injury. New evidence is regularly emerging that characterizes the role of specific inflammatory pathways in these varying states including those at risk for stroke and chronic cerebrovascular injury as well as during the acute, subacute, and repair phases of stroke. Here, we aim to highlight recent basic science and clinical evidence for many distinct inflammatory cascades active in these varying states of cerebrovascular injury. The role of cerebrovascular infections, spotlighted by the severe acute respiratory syndrome coronavirus 2 pandemic, and its association with increased stroke risk is also reviewed. Rather than converging on a shared mechanism, these emerging studies implicate varied and distinct inflammatory processes in vascular brain injury and repair. Recognition of the phasic nature of inflammatory cascades on varying states of cerebrovascular disease is likely essential to the development and implementation of an anti-inflammatory strategy in the prevention, treatment, and repair of vascular brain injury. Although advances in revascularization have taught us that time is brain, targeting inflammation for the treatment of cerebrovascular disease will undoubtedly show us that timing is brain.


Stroke ◽  
2022 ◽  
Author(s):  
Steven M. Greenberg

As life expectancy grows, brain health is increasingly seen as central to what we mean by successful aging—and vascular brain health as central to overall brain health. Cerebrovascular pathologies are highly prevalent independent contributors to age-related cognitive impairment and at least partly modifiable with available treatments. The current Focused Update addresses vascular brain health from multiple angles, ranging from pathophysiologic mechanisms and neuroimaging features to epidemiologic risk factors, social determinants, and candidate treatments. Here we highlight some of the shared themes that cut across these distinct perspectives: 1) the lifetime course of vascular brain injury pathogenesis and progression; 2) the scientific and ethical imperative to extend vascular brain health research in non-White and non-affluent populations; 3) the need for improved tools to study the cerebral small vessels themselves; 4) the potential role for brain recovery mechanisms in determining vascular brain health and resilience; and 5) the cross-pathway mechanisms by which vascular and neurodegenerative processes may interact. The diverse perspectives featured in this Focused Update offer a sense of the multidisciplinary approaches and collaborations that will be required to launch our populations towards improved brain health and successful aging.


Stroke ◽  
2022 ◽  
Author(s):  
Prashanthi Vemuri ◽  
Charles Decarli ◽  
Marco Duering

Cerebrovascular disease (CVD) manifests through a broad spectrum of mechanisms that negatively impact brain and cognitive health. Oftentimes, CVD changes (excluding acute stroke) are insufficiently considered in aging and dementia studies which can lead to an incomplete picture of the etiologies contributing to the burden of cognitive impairment. Our goal with this focused review is 3-fold. First, we provide a research update on the current magnetic resonance imaging methods that can measure CVD lesions as well as early CVD-related brain injury specifically related to small vessel disease. Second, we discuss the clinical implications and relevance of these CVD imaging markers for cognitive decline, incident dementia, and disease progression in Alzheimer disease, and Alzheimer-related dementias. Finally, we present our perspective on the outlook and challenges that remain in the field. With the increased research interest in this area, we believe that reliable CVD imaging biomarkers for aging and dementia studies are on the horizon.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sophie A. H. Jacobs ◽  
Paolo A. Muraro ◽  
Maria T. Cencioni ◽  
Sarah Knowles ◽  
James H. Cole ◽  
...  

Background: Magnetic Resonance Imaging (MRI) analysis method “brain-age” paradigm could offer an intuitive prognostic metric (brain-predicted age difference: brain-PAD) for disability in Multiple Sclerosis (MS), reflecting structural brain health adjusted for aging. Equally, cellular senescence has been reported in MS using T-cell biomarker CD8+CD57+.Objective: Here we explored links between MRI-derived brain-age and blood-derived cellular senescence. We examined the value of combining brain-PAD with CD8+CD57+(ILT2+PD-1+) T-cells when predicting disability score in MS and considered whether age-related biological mechanisms drive disability.Methods: Brain-age analysis was applied to T1-weighted MRI images. Disability was assessed and peripheral blood was examined for CD8+CD57+ T-cell phenotypes. Linear regression models were used, adjusted for sex, age and normalized brain volume.Results: We included 179 mainly relapsing-remitting MS patients. A high brain-PAD was associated with high physical disability (mean brain-PAD = +6.54 [5.12–7.95]). CD8+CD57+(ILT2+PD-1+) T-cell frequency was neither associated with disability nor with brain-PAD. Physical disability was predicted by the interaction between brain-PAD and CD8+CD57+ILT2+PD-1+ T-cell frequency (AR2 = 0.196), yet without improvement compared to brain-PAD alone (AR2 = 0.206; AICc = 1.8).Conclusion: Higher frequency of CD8+CD57+ILT2+PD-1+ T-cells in the peripheral blood in patients with an older appearing brain was associated with worse disability scores, suggesting a role of these cells in the development of disability in MS patients with poorer brain health.


Author(s):  
V. Alanko ◽  
C. Udeh-Momoh ◽  
M. Kivipelto ◽  
A. Sandebring-Matton

Since developing an effective treatment for Alzheimer’s disease (AD) has been encountered as a challenging task, attempts to prevent cognitive decline by lifestyle modifications have become increasingly appealing. Physical exercise, healthy diet, and cognitive training are all modifiable, non-pharmacological lifestyle factors considered to influence cognitive health. Implementing lifestyle modifications on animal models of AD and cognitive impairment may reveal underlying mechanisms of action by which healthy lifestyle contribute to brain health. In mice, different types of lifestyle interventions have been shown to improve cognitive abilities, alleviate AD-related pathology and neuroinflammation, restore mitochondrial function, and have a positive impact on neurogenesis and cell survival. Different proteins and pathways have been identified to mediate some of the responses, amongst them BDNF, Akt–GSK3β, JNK, and ROCK pathway. Although some important pathways have been identified as mediating improvements in brain health, more research is needed to confirm these mechanisms of action and to improve the understanding of their interplay. Moreover, multidomain lifestyle interventions targeting multiple risk factors simultaneously may be a promising avenue in future dementia prevention strategies. Therefore, future work is needed to better understand the synergistic impact of combinatory lifestyle strategies on cellular mechanisms and brain health.


Sign in / Sign up

Export Citation Format

Share Document