pathological aging
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 64)

H-INDEX

28
(FIVE YEARS 5)

2021 ◽  
Vol 108 ◽  
pp. 179-188
Author(s):  
Stephanie Langella ◽  
Peter J. Mucha ◽  
Kelly S. Giovanello ◽  
Eran Dayan

2021 ◽  
Vol 13 ◽  
Author(s):  
Giulia Carini ◽  
Laura Musazzi ◽  
Francesco Bolzetta ◽  
Alberto Cester ◽  
Chiara Fiorentini ◽  
...  

Frailty is an aging related condition, which has been defined as a state of enhanced vulnerability to stressors, leading to a limited capacity to meet homeostatic demands. Cognitive impairment is also frequent in older people, often accompanying frailty. Age is the main independent risk factor for both frailty and cognitive impairment, and compelling evidence suggests that similar age-associated mechanisms could underlie both clinical conditions. Accordingly, it has been suggested that frailty and cognitive impairment share common pathways, and some authors proposed “cognitive frailty” as a single complex phenotype. Nevertheless, so far, no clear common underlying pathways have been discovered for both conditions. microRNAs (miRNAs) have emerged as key fine-tuning regulators in most physiological processes, as well as pathological conditions. Importantly, miRNAs have been proposed as both peripheral biomarkers and potential molecular factors involved in physiological and pathological aging. In this review, we discuss the evidence linking changes of selected miRNAs expression with frailty and cognitive impairment. Overall, miR-92a-5p and miR-532-5p, as well as other miRNAs implicated in pathological aging, should be investigated as potential biomarkers (and putative molecular effectors) of cognitive frailty.


2021 ◽  
Author(s):  
Zhengshi Yang ◽  
Jessica Z.K. Caldwell ◽  
Jeffrey L. Cummings ◽  
Aaron Ritter ◽  
Jefferson W. Kinney ◽  
...  

Abstract Purpose To assess the pathological aging effect on caudate functional connectivity among mild cognitive impairment (MCI) participants and examine whether and how sex and amyloid contribute to this process. Materials and Methods 277 functional magnetic resonance imaging (fMRI) sessions from 163 cognitive normal (CN) older adults and 309 sessions from 139 participants with MCI were included as the main sample in our analysis. Pearson’s correlation was used to characterize the functional connectivity (FC) between caudate and each brain region, then caudate nodal strength was computed to quantify the overall caudate FC strength. Association analysis between caudate nodal strength and age was carried out in MCI and CN separately using linear mixed effect (LME) model with covariates (education, handedness, sex, Apolipoprotein E4 and intra-subject effect). Analysis of covariance was conducted to investigate sex, amyloid status and their interaction effects on aging with the fMRI data subset having amyloid status available. LME model was applied to women and men separately within MCI group to evaluate aging effects on caudate nodal strength and each region’s connectivity with caudate. We then evaluated the roles of sex and amyloid status in the associations of neuropsychological scores with age or caudate nodal strength. An independent cohort was used to validate the sex-dependent aging effects in MCI. Results The MCI group had significantly stronger age-related increase of caudate nodal strength compared to the CN group. Analyzing women and men separately revealed that the aging effect on caudate nodal strength among MCI participants was significant only for women (left: P=6.23x10−7, right: P=3.37x10−8), but not for men (P>0.3 for bilateral caudate). The aging effects on caudate nodal strength were not significantly mediated by brain amyloid burden. Caudate connectivity with ventral prefrontal cortex substantially contributed to the aging effect on caudate nodal strength in women with MCI. Higher caudate nodal strength is significantly related to worse cognitive performance in women but not in men with MCI. Conclusion Sex modulates the pathological aging effects on caudate nodal strength in MCI regardless of amyloid status. Caudate nodal strength may be a sensitive biomarker of pathological aging in women with MCI.


2021 ◽  
Vol 15 ◽  
Author(s):  
Daniela Marín-Pardo ◽  
Lydia Giménez-Llort

The temporal course and the severity of the involution of sensory systems through aging can be critical since they ensure the ability to perceive and recognize the world. In older people, sensory impairments significantly increase their risk of biological, psychological, and social impoverishment. Besides this, olfactory loss is considered an early biomarker in Alzheimer’s disease (AD) neurodegenerative process. Here we studied olfactory ethograms in middle-aged male and female gold-standard C57BL/6 mice and 3xTg-AD mice, a genetic model of AD that presents cognitive dysfunction and a conspicuous neuropsychiatric-like phenotype. A paradigm involving 1-day food deprivation was used to investigate the ethological patterns shown in the olfactory inspection of a new cage and the sniffing, finding, and eating of hidden food pellets. The sniffing–find–eat temporal patterns were independent of the loss of weight and unveiled (fast) olfactory signatures in Alzheimer’s disease, differing from those (slow progressive) in normal aging. Male 3xTg-AD mice exhibited an early signature than female mice, opposite to animals with normal aging. The sequence of actions was correlated in male and female 3xTg-AD mice in contrast to control mice. Social isolation, naturally occurring in male 3xTg-AD due to the death of cage mates, emphasized their olfactory patterns and disrupted the behavioral correlates. The paradigm provided distinct contextual, sex, and genotype olfactory ethogram signatures useful to investigate olfactory function in normal and AD-pathological aging. Isolation had an impact on enhancing the changes in the olfactory signature here described, for the first time, in the 3xTg-AD model of Alzheimer’s disease.


2021 ◽  
Author(s):  
Mariagrazia Capizzi ◽  
Antonino Visalli ◽  
Alessio Faralli ◽  
Giovanna Mioni

This study aimed to test two common explanations for the general finding of age-related changes in temporal processing. The first one is that older adults have a real difficulty in processing temporal information as compared to younger adults. The second one is that older adults perform poorly on timing tasks because of their reduced cognitive functioning. These explanations have been mostly contrasted in explicit timing tasks, where participants are overtly informed about the temporal nature of the task. Fewer studies have instead focused on age-related differences in implicit timing tasks, where no explicit instructions to process time are provided. Moreover, the comparison of both explicit and implicit timing in older adults has been restricted to healthy aging only. Here, a large sample (N= 85) of healthy and pathological older participants completed explicit (time bisection) and implicit (foreperiod) timing tasks. Participants’ age and general cognitive functioning, measured with the Mini-Mental State Examination (MMSE), were used as continuous variables to explain performance on explicit and implicit timing tasks. Results showed a clear dissociation between the effects of healthy cognitive aging and pathological cognitive decline on processing of explicit and implicit timing. Whereas age and cognitive decline similarly impaired the non-temporal cognitive processes (e.g., memory for and/or attention to durations) involved in explicit temporal judgements, processing of implicit timing survived normal age-related changes. These findings carry important theoretical and practical implications by providing the first experimental evidence that processing of implicit, but not explicit, timing is differentially affected in healthy and pathological aging.


2021 ◽  
Author(s):  
Eleni Gkanatsiou ◽  
Johanna Nilsson ◽  
Christina E. Toomey ◽  
Agathe Vrillon ◽  
Hlin Kvartsberg ◽  
...  

2021 ◽  
Author(s):  
Bruna Fulgencio Dias ◽  
Maria Aparecida Camargos Bicalho ◽  
Mônica Vieira Costa ◽  
Rafaela Teixeira de Ávila ◽  
Leandro Fernandes Malloy-Diniz ◽  
...  

2021 ◽  
Vol 13 ◽  
Author(s):  
Delphine Puttaert ◽  
Vincent Wens ◽  
Patrick Fery ◽  
Antonin Rovai ◽  
Nicola Trotta ◽  
...  

The Free and Cued Selective Reminding Test (FCSRT) is a largely validated neuropsychological test for the identification of amnestic syndrome from the early stage of Alzheimer’s disease (AD). Previous electrophysiological data suggested a slowing down of the alpha rhythm in the AD-continuum as well as a key role of this rhythmic brain activity for episodic memory processes. This study therefore investigates the link between alpha brain activity and alterations in episodic memory as assessed by the FCSRT. For that purpose, 37 patients with altered FCSRT performance underwent a comprehensive neuropsychological assessment, supplemented by 18F-fluorodeoxyglucose positron emission tomography/structural magnetic resonance imaging (18FDG-PET/MR), and 10 min of resting-state magnetoencephalography (MEG). The individual alpha peak frequency (APF) in MEG resting-state data was positively correlated with patients’ encoding efficiency as well as with the efficacy of semantic cues in facilitating patients’ retrieval of previous stored word. The APF also correlated positively with patients’ hippocampal volume and their regional glucose consumption in the posterior cingulate cortex. Overall, this study demonstrates that alterations in the ability to learn and store new information for a relatively short-term period are related to a slowing down of alpha rhythmic activity, possibly due to altered interactions in the extended mnemonic system. As such, a decreased APF may be considered as an electrophysiological correlate of short-term episodic memory dysfunction accompanying pathological aging.


Sign in / Sign up

Export Citation Format

Share Document