scholarly journals Complex interactions between precipitation, grain growth and recrystallization in a severely deformed Al-Zn-Mg-Cu alloy and consequences on the mechanical behavior

Materialia ◽  
2021 ◽  
Vol 15 ◽  
pp. 101028
Author(s):  
Amandine Duchaussoy ◽  
Xavier Sauvage ◽  
Alexis Deschamps ◽  
Frederic De Geuser ◽  
Gilles Renou ◽  
...  
Author(s):  
Zhiheng Huang ◽  
Zhiyong Wu ◽  
Hua Xiong ◽  
Yucheng Ma

Abstract Microstructure and its effect on mechanical behavior of ultrafine interconnects have been studied in this paper using a modeling approach. The microstructure from the processes of solidification, spinodal decomposition, and grain growth in ultrafine interconnects has highlighted its importance. The size, geometry and composition of interconnects as well as the elastic energy can influence microstructure and thus the mechanical behavior. Quantification of microstructure in ultrafine interconnects is a necessary step to establish the linkage between microstructure and reliability.


2011 ◽  
Vol 509 (25) ◽  
pp. 7109-7115 ◽  
Author(s):  
Zheng Chen ◽  
Feng Liu ◽  
Xiaoqin Yang ◽  
Chengjin Shen ◽  
Yu Fan
Keyword(s):  

2003 ◽  
Vol 358 (1-2) ◽  
pp. 318-323 ◽  
Author(s):  
Bing Q. Han ◽  
Enrique J. Lavernia ◽  
Farghalli A. Mohamed
Keyword(s):  

2010 ◽  
Vol 654-656 ◽  
pp. 1428-1431 ◽  
Author(s):  
Margarita Vargas ◽  
Sri Lathabai

Friction stir processing (FSP) was performed on AA 7075-T6, a heat treatable high strength Al-Zn-Mg-Cu alloy. The two main FSP parameters, the tool rotational and travel speed, were varied systematically in order to understand their influence on the microstructure and mechanical properties of the processed zone. At a given rotational speed, increasing the travel speed increased the microhardness of the nugget (stir) zone; for a given travel speed there appeared to be an optimum rotational speed which resulted in the highest microhardness. The range of FSP parameters used did not significantly influence the nugget zone grain size. It is suggested that the observed mechanical properties are a result of the complex interactions between the FSP thermo-mechanical effects and the processes of dissolution, coarsening and re-precipitation of the strengthening precipitates in this alloy.


2019 ◽  
Vol 6 (6) ◽  
pp. 066548
Author(s):  
Xiaofeng Wang ◽  
Tongya Shi ◽  
Hebin Wang ◽  
Songze Zhou ◽  
Chao Xie ◽  
...  

2015 ◽  
Vol 1105 ◽  
pp. 182-189 ◽  
Author(s):  
Adnan I.O. Zaid ◽  
S.M.A. Al-Qawabah

Al-4% Cu alloys are now widely used in many engineering applications especially in robotic, aerospace and vibration control area. The main problem arises from the weakness of their mechanical characteristics. Therefore, this study is directed towards enhancing the mechanical properties through severe plastic deformation, hence it is anticipated that cold direct extrusion process may enhance their mechanical behavior. This was performed through using three different cross sectional dies namely; circular, square, and rectangular that have the same cross sectional area. The general microstructure, microhardness, and compression tests were performed on each specimen produced before and after extrusion for Al and Al-4% Cu alloy. It was found that the maximum enhancement in mechanical behavior was achieved after extrusion through the rectangular shape for both Al and Al-4% Cu alloy at 0.2 strain by 143% for Al and 134.8% for Al-4%Cu wt.; similarly the hardness of both of them was improved where a maximum of 141.8 % was obtained for Al-4% Cu wt. in case of rectangular cross sectional die.


Sign in / Sign up

Export Citation Format

Share Document