A generic design methodology for sliding mode control of switched systems

2006 ◽  
Vol 65 (9) ◽  
pp. 1751-1772 ◽  
Author(s):  
P.Y. Richard ◽  
H. Cormerais ◽  
J. Buisson
2018 ◽  
Vol 41 (7) ◽  
pp. 1880-1887
Author(s):  
Yonghui Liu

The problem of adaptive sliding mode control is considered for a class of stochastic switched systems with actuator degradation. In this work, the input matrix for each subsystem is unnecessarily the same. Thus, a weighted sum approach of the input matrices is introduced such that a common sliding surface is designed. By online estimating the loss of effectiveness of the actuators, an adaptive sliding mode controller is designed. It can not only compensate the effect of the actuator degradation effectively, but also reduce the conservatism that the bound of the actuator faults should be known in advance. Moreover, it is shown that the reachability of the sliding surface can be guaranteed. Furthermore, sufficient conditions on the mean-square exponential stability of the sliding mode dynamics are obtained via the average dwell time method. Finally, a numerical simulation example is given to demonstrate the effectiveness of the proposed method.


2013 ◽  
Vol 350 (1) ◽  
pp. 19-33 ◽  
Author(s):  
Xiaoxi Yu ◽  
Chunfeng Wu ◽  
Fangzhou Liu ◽  
Ligang Wu

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zhaolan He ◽  
Xue Wang ◽  
Zongwei Gao ◽  
Jingjie Bai

This paper is concerned with a state observer-based sliding mode control design methodology for a class of continuous-time state-delayed switched systems with unmeasurable states and nonlinear uncertainties. The advantages of the proposed scheme mainly lie in which it eliminates the need for state variables to be full accessible and parameter uncertainties to be satisfied with the matching condition. Firstly, a state observer is constructed, and a sliding surface is designed. By matrix transformation techniques, combined with Lyapunov function and sliding surface function, a sufficient condition is given to ensure asymptotic stability of the overall closed-loop systems composed of the observer dynamics and the estimation error dynamics. Then, reachability of sliding surface is investigated. At last, an illustrative numerical example is presented to prove feasibility of the proposed approaches.


Sign in / Sign up

Export Citation Format

Share Document