On the number of the periodic solutions of the nonlinear Hamiltonian system

2009 ◽  
Vol 71 (12) ◽  
pp. e1100-e1108 ◽  
Author(s):  
Tacksun Jung ◽  
Q-Heung Choi
2012 ◽  
Vol 62 (2) ◽  
Author(s):  
Xingyong Zhang ◽  
Xianhua Tang

AbstractIn this paper, some existence theorems are obtained for nonconstant periodic solutions of second order Hamiltonian system with a p-Laplacian by using the Linking Theorem.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Weiwei Sun ◽  
Lianghong Peng ◽  
Ying Zhang ◽  
Huaidan Jia

This paper presentsH∞excitation control design problem for power systems with input time delay and disturbances by using nonlinear Hamiltonian system theory. The impact of time delays introduced by remote signal transmission and processing in wide-area measurement system (WAMS) is well considered. Meanwhile, the systems under investigation are disturbed by random fluctuation. First, under prefeedback technique, the power systems are described as a nonlinear Hamiltonian system. Then theH∞excitation controller of generators connected to distant power systems with time delay and stochasticity is designed. Based on Lyapunov functional method, some sufficient conditions are proposed to guarantee the rationality and validity of the proposed control law. The closed-loop systems under the control law are asymptotically stable in mean square independent of the time delay. And we through a simulation of a two-machine power system prove the effectiveness of the results proposed in this paper.


2005 ◽  
Vol 1 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Albert C. J. Luo

The numerical prediction of chaos and quasi-periodic motion on the homoclinic surface of a two-degree-of-freedom (2-DOF) nonlinear Hamiltonian system is presented through the energy spectrum method. For weak interactions, the analytical conditions for chaotic motion in such a Hamiltonian system are presented through the incremental energy approach. The Poincaré mapping surfaces of chaotic motions for this specific nonlinear Hamiltonian system are illustrated. The chaotic and quasi-periodic motions on the phase planes, displacement subspace (or potential domains), and the velocity subspace (or kinetic energy domains) are illustrated for a better understanding of motion behaviors on the homoclinic surface. Through this investigation, it is observed that the chaotic and quasi-periodic motions almost fill on the homoclinic surface of the 2-DOF nonlinear Hamiltonian system. The resonant-periodic motions for such a system are theoretically countable but numerically inaccessible. Such conclusions are similar to the ones in the KAM theorem even though the KAM theorem is based on the small perturbation.


2013 ◽  
Vol 394 ◽  
pp. 92-95
Author(s):  
Da Wei Sun ◽  
Jia Rui Liu

This paper studies the periodic solutions to a superquadratic second-oder discrete type Hamiltonian system in the n dimensional Euclide space. By the variational methods and some discrete computional techniques, this paper proves the existence of solution to a new type discrete Hamiltonian system.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Juhong Kuang ◽  
Weiyi Chen ◽  
Zhiming Guo

<p style='text-indent:20px;'>In this paper, we develop a new method to study Rabinowitz's conjecture on the existence of periodic solutions with prescribed minimal period for second order even Hamiltonian system without any convexity assumptions. Specifically, we first study the associated homogenous Dirichlet boundary value problems for the discretization of the Hamiltonian system with given step length and obtain a sequence of nonnegative solutions corresponding to different step lengths by using discrete variational methods. Then, using the sequence of nonnegative solutions, we construct a sequence of continuous functions which can be shown to be precompact. Finally, by utilizing the limit function of convergent subsequence and the symmetry of the potential, we will obtain the desired periodic solution. In particular, we prove Rabinowitz's conjecture in the case when the potential satisfies a certain symmetric assumption. Moreover, our main result greatly improves the related results in the literature in the case where <inline-formula><tex-math id="M1">\begin{document}$ N = 1 $\end{document}</tex-math></inline-formula>.</p>


Sign in / Sign up

Export Citation Format

Share Document