Uniform regularity estimates of solutions to three dimensional incompressible magnetic Bénard equations with Navier-slip type boundary conditions in half space

2020 ◽  
Vol 199 ◽  
pp. 111932
Author(s):  
Shengxin Li ◽  
Jing Wang
Author(s):  
H.-H. Dai ◽  
J. Kaplunov ◽  
D. A. Prikazchikov

The paper deals with the three-dimensional problem in linear isotropic elasticity for a coated half-space. The coating is modelled via the effective boundary conditions on the surface of the substrate initially established on the basis of an ad hoc approach and justified in the paper at a long-wave limit. An explicit model is derived for the surface wave using the perturbation technique, along with the theory of harmonic functions and Radon transform. The model consists of three-dimensional ‘quasi-static’ elliptic equations over the interior subject to the boundary conditions on the surface which involve relations expressing wave potentials through each other as well as a two-dimensional hyperbolic equation singularly perturbed by a pseudo-differential (or integro-differential) operator. The latter equation governs dispersive surface wave propagation, whereas the elliptic equations describe spatial decay of displacements and stresses. As an illustration, the dynamic response is calculated for impulse and moving surface loads. The explicit analytical solutions obtained for these cases may be used for the non-destructive testing of the thickness of the coating and the elastic moduli of the substrate.


2021 ◽  
Vol 15 (3) ◽  
Author(s):  
Markus Holzmann

AbstractIn this note the three dimensional Dirac operator $$A_m$$ A m with boundary conditions, which are the analogue of the two dimensional zigzag boundary conditions, is investigated. It is shown that $$A_m$$ A m is self-adjoint in $$L^2(\Omega ;{\mathbb {C}}^4)$$ L 2 ( Ω ; C 4 ) for any open set $$\Omega \subset {\mathbb {R}}^3$$ Ω ⊂ R 3 and its spectrum is described explicitly in terms of the spectrum of the Dirichlet Laplacian in $$\Omega $$ Ω . In particular, whenever the spectrum of the Dirichlet Laplacian is purely discrete, then also the spectrum of $$A_m$$ A m consists of discrete eigenvalues that accumulate at $$\pm \infty $$ ± ∞ and one additional eigenvalue of infinite multiplicity.


2003 ◽  
Vol 70 (1) ◽  
pp. 101-110 ◽  
Author(s):  
E. Pan

This paper derives, for the first time, the complete set of three-dimensional Green’s functions (displacements, stresses, and derivatives of displacements and stresses with respect to the source point), or the generalized Mindlin solutions, in an anisotropic half-space z>0 with general boundary conditions on the flat surface z=0. Applying the Mindlin’s superposition method, the half-space Green’s function is obtained as a sum of the generalized Kelvin solution (Green’s function in an anisotropic infinite space) and a Mindlin’s complementary solution. While the generalized Kelvin solution is in an explicit form, the Mindlin’s complementary part is expressed in terms of a simple line-integral over [0,π]. By introducing a new matrix K, which is a suitable combination of the eigenmatrices A and B, Green’s functions corresponding to different boundary conditions are concisely expressed in a unified form, including the existing traction-free and rigid boundaries as special cases. The corresponding generalized Boussinesq solutions are investigated in details. In particular, it is proved that under the general boundary conditions studied in this paper, the generalized Boussinesq solution is still well-defined. A physical explanation for this solution is also offered in terms of the equivalent concept of the Green’s functions due to a point force and an infinitesimal dislocation loop. Finally, a new numerical example for the Green’s functions in an orthotropic half-space with different boundary conditions is presented to illustrate the effect of different boundary conditions, as well as material anisotropy, on the half-space Green’s functions.


Author(s):  
Dmitrii A. Pozharskii

Results are reviewed collected in the investigations of periodic contact and mixed problems of the plane, axially symmetric and spatial elasticity theory. Among mixed problems, cut (crack) problems are focused integral equations of which are connected with those for contact problems. The periodic contact problems stimulate research of the discrete contact of rough (wavy) surfaces. Together with classical elastic domains (half-plane, half-space, plane and full space), we consider periodic problems for cylinder, layer, cone and spatial wedge. Most publications including fun-damental ones by Westergaard and Shtaerman deals with plane periodic problems of the elasticity theory. Here, one can mention approaches based on complex variable functions, Fourier series, Green’s functions and potential func-tions. A fracture mechanics approach to the plane periodic contact problem was developed. Methods and approaches are considered which allow us to take friction forces, adhesion and wear into account in the periodic contact. For spatial periodic and doubly periodic contact and properly mixed problems, we describe such methods as the localiza-tion method, the asymptotic methods, the method of nonlinear boundary integral equations, the fast Fourier trans-form. The half-space is the simplest model for elastic solids. But for the simplest straight-line periodic punch system, some three-dimensional contact problems (normal contact or tangential contact for shifted cohesive coatings) turn out to be incorrect because their integral equations contain divergent series. Considering three-dimensional periodic problems, I.G. Goryacheva disposes circular punches in special way (circular orbits, polar coordinated are used for centers of the punches), in this case one can prove convergence of the series in the integral equation (it is important that the punches are circular). For the periodic problems for an elastic layer, V.M. Aleksandrov has shown that the series in integral equations converge but the kernels become more complicated. In the present paper, we demonstrate that for the straight-line periodic punch system of arbitrary form the contact problem for a half-space turns out to be correct in case of more complicated boundary conditions. Namely, it can be sliding support or rigid fixation of a half-plane on the half-space boundary, the half-plane boundary should be parallel to the straight-line (the punch system axis) for arbitrary finite distance between the parallel lines. On this way, for sliding support, the kernel of the period-ic problem integral equation kernel is free of integrals, it consists of single convergent series (normal contact, the kernel is given in two equivalent forms). We consider classical percolation (how neighboring contact domains pene-trate one to another, investigated by K.L. Johnson, V.A. Yastrebov with co-authors) for the three-dimensional periodic contact amplification as well as percolation for the straight-line punch system. A similar approach is suggested for the case of periodic tangential contact (coatings system cohesive with a half-space boundary shifted along its axis or perpendicular to it). Here, one can separate out unique solutions of auxiliary problems because the line of changing boundary conditions on the half-space boundary can provoke non-uniqueness. The method proposed opens possibility to consider more complicated three-dimensional periodic contact problems for straight-line punch systems with changing boundary conditions inside the period.


Geophysics ◽  
1970 ◽  
Vol 35 (2) ◽  
pp. 359-359
Author(s):  
Amalendu Roy

All boundary conditions of the problem discussed by Dieter et al cannot be satisfied by the solution given in equations (8) and (9). It is not adequate to consider just one image in the manner illustrated by Figure 2. There will be a series of higher order images: [Formula: see text] and [Formula: see text] will be reflected on S giving the next image. This image in turn will be reflected on [Formula: see text]; and so on. Equations (8) and (9), therefore, represent an approximation—not a very good one—and will hold approximately only under very restricted conditions (see, for instance, “Interpretation Theory in Applied Geophysics” by F. S. Grant & G. F. West, p. 425, McGraw‐Hill Book Company, N. Y.). They do not constitute “a perfectly suitable form” for the potential due to a closed conducting body in a half‐space.


1997 ◽  
Vol 05 (01) ◽  
pp. 117-136 ◽  
Author(s):  
Loukas F. Kallivokas ◽  
Aggelos Tsikas ◽  
Jacobo Bielak

We have recently developed absorbing boundary conditions for the three-dimensional scalar wave equation in full-space. Their applicability has been extended to half-space scattering problems where the scatterer is located near a pressure-free surface. A variational scheme was also proposed for coupling the structural acoustics equations with the absorbing boundary conditions. It was shown that the application of a Galerkin method on the variational form results in an attractive finite element scheme that, in a natural way, gives rise to a surface-only absorbing boundary element on the truncation boundary. The element — the finite element embodiment of a second-order absorbing boundary condition — is completely characterized by a pair of symmetric, frequency-independent damping and stiffness matrices, and is equally applicable to the transient and harmonic steady-state regimes. Previously, we had applied the methodology to problems involving scatterers of arbitrary geometry. In this paper, we validate our approach by comparing numerical results for rigid spherical scatterers submerged in a half-space, against a recently developed analytic solution.


Sign in / Sign up

Export Citation Format

Share Document