Periodic Contact and Mixed Problems of the Elasticity Theory (Review)

Author(s):  
Dmitrii A. Pozharskii

Results are reviewed collected in the investigations of periodic contact and mixed problems of the plane, axially symmetric and spatial elasticity theory. Among mixed problems, cut (crack) problems are focused integral equations of which are connected with those for contact problems. The periodic contact problems stimulate research of the discrete contact of rough (wavy) surfaces. Together with classical elastic domains (half-plane, half-space, plane and full space), we consider periodic problems for cylinder, layer, cone and spatial wedge. Most publications including fun-damental ones by Westergaard and Shtaerman deals with plane periodic problems of the elasticity theory. Here, one can mention approaches based on complex variable functions, Fourier series, Green’s functions and potential func-tions. A fracture mechanics approach to the plane periodic contact problem was developed. Methods and approaches are considered which allow us to take friction forces, adhesion and wear into account in the periodic contact. For spatial periodic and doubly periodic contact and properly mixed problems, we describe such methods as the localiza-tion method, the asymptotic methods, the method of nonlinear boundary integral equations, the fast Fourier trans-form. The half-space is the simplest model for elastic solids. But for the simplest straight-line periodic punch system, some three-dimensional contact problems (normal contact or tangential contact for shifted cohesive coatings) turn out to be incorrect because their integral equations contain divergent series. Considering three-dimensional periodic problems, I.G. Goryacheva disposes circular punches in special way (circular orbits, polar coordinated are used for centers of the punches), in this case one can prove convergence of the series in the integral equation (it is important that the punches are circular). For the periodic problems for an elastic layer, V.M. Aleksandrov has shown that the series in integral equations converge but the kernels become more complicated. In the present paper, we demonstrate that for the straight-line periodic punch system of arbitrary form the contact problem for a half-space turns out to be correct in case of more complicated boundary conditions. Namely, it can be sliding support or rigid fixation of a half-plane on the half-space boundary, the half-plane boundary should be parallel to the straight-line (the punch system axis) for arbitrary finite distance between the parallel lines. On this way, for sliding support, the kernel of the period-ic problem integral equation kernel is free of integrals, it consists of single convergent series (normal contact, the kernel is given in two equivalent forms). We consider classical percolation (how neighboring contact domains pene-trate one to another, investigated by K.L. Johnson, V.A. Yastrebov with co-authors) for the three-dimensional periodic contact amplification as well as percolation for the straight-line punch system. A similar approach is suggested for the case of periodic tangential contact (coatings system cohesive with a half-space boundary shifted along its axis or perpendicular to it). Here, one can separate out unique solutions of auxiliary problems because the line of changing boundary conditions on the half-space boundary can provoke non-uniqueness. The method proposed opens possibility to consider more complicated three-dimensional periodic contact problems for straight-line punch systems with changing boundary conditions inside the period.

2008 ◽  
Vol 75 (5) ◽  
Author(s):  
Fazil Erdogan ◽  
Murat Ozturk

Generally, the mixed boundary value problems in fracture and contact mechanics may be formulated in terms of integral equations. Through a careful asymptotic analysis of the kernels and by separating nonintegrable singular parts, the unique features of the unknown functions can then be recovered. In mechanics and potential theory, a characteristic feature of these singular kernels is the Cauchy singularity. In the absence of other nonintegrable kernels, Cauchy kernel would give a square-root or conventional singularity. On the other hand, if the kernels contain, in addition to a Cauchy singularity, other nonintegrable singular terms, the application of the complex function theory would show that the solution has a non-square-root or unconventional singularity. In this article, some typical examples from crack and contact mechanics demonstrating unique applications of such integral equations will be described. After some remarks on three-dimensional singularities, the key examples considered will include the generalized Cauchy kernels, membrane and sliding contact mechanics, coupled crack-contact problems, and crack and contact problems in graded materials.


The integral-equation method of solving the problem of the diffraction of electromagnetic waves by a perfectly conducting plane screen has been criticized by C. J. Bouwkamp, who claims that it is valid only when certain boundary conditions are satisfied on the edge of the screen. This criticism is answered. It is also shown that, since the equations to be solved are differential-integral equations, an arbitrary function arises in the solution and that this arbitrary function may be chosen so that, although there are singularities at the edge of the screen, there is no radiation of energy from the edge. As an illustration, the three-dimensional problem of diffraction by a half-plane is solved.


2009 ◽  
Vol 06 (02) ◽  
pp. 317-332 ◽  
Author(s):  
MENG-CHENG CHEN ◽  
HUI-QIN YU

In this work a three-dimensional planar crack on the surface of elastic half-space was analyzed under rolling contact load. The stresses interior to an elastic half-space body under rolling contact load and those produced by an infinitesimal displacement jump loop for the elastic half-space body were used to reduce the planar crack problem to the solution of a system of two-dimensional hypersingular integral equations with unknown displacement jump. The ideas of finite element discretization were employed to construct numerical solution schemes for solving the integral equations. An appropriate treatment of the associated hypersingular integral in the numerical solution to the integral equations was proposed in Hadamard's finite-part integral sense. The numerical results showed that the present procedure yields solutions with high accuracies. The stress intensity factors near the crack front edge under rolling contact load were indicated in graphical form with varying the crack shape, the radius of rolling contact zone and the friction coefficients, respectively. In addition, the influence of the lubricant infiltrating the crack surfaces on the crack propagation was also discussed in the paper.


Author(s):  
H.-H. Dai ◽  
J. Kaplunov ◽  
D. A. Prikazchikov

The paper deals with the three-dimensional problem in linear isotropic elasticity for a coated half-space. The coating is modelled via the effective boundary conditions on the surface of the substrate initially established on the basis of an ad hoc approach and justified in the paper at a long-wave limit. An explicit model is derived for the surface wave using the perturbation technique, along with the theory of harmonic functions and Radon transform. The model consists of three-dimensional ‘quasi-static’ elliptic equations over the interior subject to the boundary conditions on the surface which involve relations expressing wave potentials through each other as well as a two-dimensional hyperbolic equation singularly perturbed by a pseudo-differential (or integro-differential) operator. The latter equation governs dispersive surface wave propagation, whereas the elliptic equations describe spatial decay of displacements and stresses. As an illustration, the dynamic response is calculated for impulse and moving surface loads. The explicit analytical solutions obtained for these cases may be used for the non-destructive testing of the thickness of the coating and the elastic moduli of the substrate.


1983 ◽  
Vol 105 (4) ◽  
pp. 585-590 ◽  
Author(s):  
Y. P. Chiu ◽  
M. J. Hartnett

Presented herein is a method of solution for three dimensional counterformal contact problems involving layered solids. Based on the generalized Boussinesq solution for a layered half space, displacement and stress coefficients are formulated for a uniformly distributed load applied over a rectangular area on the surface of a layered half space. A precise analytical solution has been developed to find the surface pressure, contact area, approach and subsurface stresses for contact of arbitrary surface shapes. Numerical results have been obtained for the indentation of a second order surface with a layered solid for the case the layer to substrate shear modulus ratio equal to 3, which simulates the contact of a steel rolling element with a steel bearing ring supported by aluminum substrate (or housing) in a transmission system.


Author(s):  
K. V. Vasil’ev ◽  
G. T. Sulym

The previously developed direct cutting-out method in application to isotropic materials, in particular to bodies with thin inhomogeneities in the form of cracks and thin deformable inclusions is extended to the case of taking into account the possible anisotropy of the material. The basis of the method is to modulate the original problem of determining the stress state of a limited body with thin inclusions by means of a technically simpler to solve problem of elastic equilibrium of an infinite space with a slightly increased number of thin inhomogeneities, which in turn form the boundaries of the investigated body. By loaded cracks we model the boundary conditions of the first kind, and by absolutely rigid inclusions embedded into a matrix with a certain tension – the boundary conditions of the second kind. Using the method of the jump functions and the interaction conditions of a matrix with inclusion, the problem is reduced to a system of singular integral equations, the solution of which is carried out using the method of collocations. Approbation of the developed approach is carried out on the problem of elastic equilibrium of anisotropic (orthotropic in direction of shear) half-space with a symmetrically loaded very flexible inclusion (a crack) at jammed half-space boundary. The influence of inhomogeneity orientation and the half-space material on the generalized stress intensity factors were studied.


Sign in / Sign up

Export Citation Format

Share Document