The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay

2010 ◽  
Vol 4 (4) ◽  
pp. 775-781 ◽  
Author(s):  
Xianmin Zhang ◽  
Xiyue Huang ◽  
Zuohua Liu
2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Jaydev Dabas ◽  
Archana Chauhan ◽  
Mukesh Kumar

This paper is concerned with the existence and uniqueness of a mild solution of a semilinear fractional-order functional evolution differential equation with the infinite delay and impulsive effects. The existence and uniqueness of a mild solution is established using a solution operator and the classical fixed-point theorems.


Author(s):  
Shengli Xie

AbstractIn this paper we prove the existence and uniqueness of mild solutions for impulsive fractional integro-differential evolution equations with infinite delay in Banach spaces. We generalize the existence theorem for integer order differential equations to the fractional order case. The results obtained here improve and generalize many known results.


Author(s):  
Min Yang ◽  
Qiru Wang

AbstractIn this paper, we consider a class of evolution equations with Hilfer fractional derivative. By employing the fixed point theorem and the noncompact measure method, we establish a number of new criteria to guarantee the existence and uniqueness of mild solutions when the associated semigroup is compact or not.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Dang Huan Diem

The current paper is concerned with the existence of mild solutions for a class of second-order impulsive neutral stochastic integrodifferential equations with nonlocal conditions and infinite delays in a Hilbert space. A sufficient condition for the existence results is obtained by using the Krasnoselskii-Schaefer-type fixed point theorem combined with theories of a strongly continuous cosine family of bounded linear operators. Finally, an application to the stochastic nonlinear wave equation with infinite delay is given.


2002 ◽  
Vol 7 (1) ◽  
pp. 93-104 ◽  
Author(s):  
Mifodijus Sapagovas

Numerous and different nonlocal conditions for the solvability of parabolic equations were researched in many articles and reports. The article presented analyzes such conditions imposed, and observes that the existence and uniqueness of the solution of parabolic equation is related mainly to ”smallness” of functions, involved in nonlocal conditions. As a consequence the hypothesis has been made, stating the assumptions on functions in nonlocal conditions are related to numerical algorithms of solving parabolic equations, and not to the parabolic equation itself.


2020 ◽  
Vol 7 (1) ◽  
pp. 272-280
Author(s):  
Mamadou Abdoul Diop ◽  
Kora Hafiz Bete ◽  
Reine Kakpo ◽  
Carlos Ogouyandjou

AbstractIn this work, we present existence of mild solutions for partial integro-differential equations with state-dependent nonlocal local conditions. We assume that the linear part has a resolvent operator in the sense given by Grimmer. The existence of mild solutions is proved by means of Kuratowski’s measure of non-compactness and a generalized Darbo fixed point theorem in Fréchet space. Finally, an example is given for demonstration.


Sign in / Sign up

Export Citation Format

Share Document