A highly stretchable and deformation-insensitive bionic electronic exteroceptive neural sensor for human-machine interfaces

Nano Energy ◽  
2021 ◽  
Vol 80 ◽  
pp. 105548
Author(s):  
Xinqin Liao ◽  
Wensong Wang ◽  
Liang Wang ◽  
Haoran Jin ◽  
Lin Shu ◽  
...  
2019 ◽  
Vol 116 (13) ◽  
pp. 5967-5972 ◽  
Author(s):  
Zhengjin Wang ◽  
Chunping Xiang ◽  
Xi Yao ◽  
Paul Le Floch ◽  
Julien Mendez ◽  
...  

In materials of all types, hysteresis and toughness are usually correlated. For example, a highly stretchable elastomer or hydrogel of a single polymer network has low hysteresis and low toughness. The single network is commonly toughened by introducing sacrificial bonds, but breaking and possibly reforming the sacrificial bonds causes pronounced hysteresis. In this paper, we describe a principle of stretchable materials that disrupt the toughness–hysteresis correlation, achieving both high toughness and low hysteresis. We demonstrate the principle by fabricating a composite of two constituents: a matrix of low elastic modulus, and fibers of high elastic modulus, with strong adhesion between the matrix and the fibers, but with no sacrificial bonds. Both constituents have low hysteresis (5%) and low toughness (300 J/m2), whereas the composite retains the low hysteresis but achieves high toughness (10,000 J/m2). Both constituents are prone to fatigue fracture, whereas the composite is highly fatigue resistant. We conduct experiment and computation to ascertain that the large modulus contrast alleviates stress concentration at the crack front, and that strong adhesion binds the fibers and the matrix and suppresses sliding between them. Stretchable materials of high toughness and low hysteresis provide opportunities to the creation of high-cycle and low-dissipation soft robots and soft human–machine interfaces.


Author(s):  
Chen Hu ◽  
Malik Haider ◽  
Lukas Hahn ◽  
Mengshi Yang ◽  
Robert Luxenhofer

Hydrogels that can be processed with additive manufacturing techniques and concomitantly possess favorable mechanical properties are interesting for many advanced applications. However, the development of novel ink materials with high...


Small ◽  
2021 ◽  
pp. 2100542
Author(s):  
Kangkang Zhou ◽  
Wangjiehao Xu ◽  
Yunfei Yu ◽  
Wei Zhai ◽  
Zuqing Yuan ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuyan Wang ◽  
Xin Huang ◽  
Xinxing Zhang

AbstractSelf-healing materials integrated with excellent mechanical strength and simultaneously high healing efficiency would be of great use in many fields, however their fabrication has been proven extremely challenging. Here, inspired by biological cartilage, we present an ultrarobust self-healing material by incorporating high density noncovalent bonds at the interfaces between the dentritic tannic acid-modified tungsten disulfide nanosheets and polyurethane matrix to collectively produce a strong interfacial interaction. The resultant nanocomposite material with interwoven network shows excellent tensile strength (52.3 MPa), high toughness (282.7 MJ m‒3, which is 1.6 times higher than spider silk and 9.4 times higher than metallic aluminum), high stretchability (1020.8%) and excellent healing efficiency (80–100%), which overturns the previous understanding of traditional noncovalent bonding self-healing materials where high mechanical robustness and healing ability are mutually exclusive. Moreover, the interfacical supramolecular crosslinking structure enables the functional-healing ability of the resultant flexible smart actuation devices. This work opens an avenue toward the development of ultrarobust self-healing materials for various flexible functional devices.


Sign in / Sign up

Export Citation Format

Share Document