strong interfacial interaction
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 20)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
Vol 9 ◽  
Author(s):  
Chunguang Wei ◽  
Zhidong Hou ◽  
Huanhuan Sun ◽  
Jian-Gan Wang

Hierarchically two-dimensional (2D) heteroarchitecture with ultrafine MoS2 nanosheets vertically patterned on graphene is developed by using a facile solvothermal method. It is revealed that the strong interfacial interaction between acidic Mo precursors and graphene oxides allows for uniform and tight alignment of edge-oriented MoS2 nanosheets on planar graphene. The unique sheet-on-sheet architecture is of grand advantage in synergistically utilizing the highly conductive graphene and the electroactive MoS2, thus rendering boosted reaction kinetics and robust structural integrity for energy storage. Consequently, the heterostructured MoS2@graphene exhibits impressive Li/Na-ion storage properties, including high-capacity delivery and superior rate/cycling capability. The present study will provide a positive impetus on rational design of 2D metal sulfide/graphene composites as advanced electrode materials for high-efficient alkali–metal ion storage.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Qi Tang ◽  
Lan Cao ◽  
Xiurui Lang ◽  
Yingxia Zong ◽  
Chengzhong Zong

Abstract In order to obtain higher thermoelectric and mechanical properties in nonpolar thermoplastic vulcanizates (TPVs), the butyl rubber/polypropylene (TPVs)/hydroxylated graphene (HGE) composites with nanosheet network were prepared through masterbatch technique and based on thermodynamic calculations, using polypropylene-graft-maleic anhydride (PP-MA) as a compatibilizer. The Fourier transform infrared (FTIR) and Raman spectra revealed the introduced maleic anhydride group on PP-MA can form strong interfacial interaction with hydroxyl-containing functional groups on HGE. Morphology study indicated the rubber particles in the composites occupied the most volume of the PP phase, as expected to hinder the aggregation of HGE and form the effective nanosheet network. The nanosheet network can be combined with the butyl rubber (IIR) cross-linked particles during the dynamic vulcanization process to improve the interface bonding between PP and IIR, thus increasing the tensile strength of TPVs. The prepared TPVs/HGE composites have significantly improved in mechanical properties, thermal properties and dielectric properties, which provides a guarantee for their potential application as multifunctional TPVs polymers.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Bin Cao ◽  
Huan Liu ◽  
Xin Zhang ◽  
Peng Zhang ◽  
Qizhen Zhu ◽  
...  

AbstractZnS has great potentials as an anode for lithium storage because of its high theoretical capacity and resource abundance; however, the large volume expansion accompanied with structural collapse and low conductivity of ZnS cause severe capacity fading and inferior rate capability during lithium storage. Herein, 0D-2D ZnS nanodots/Ti3C2Tx MXene hybrids are prepared by anchoring ZnS nanodots on Ti3C2Tx MXene nanosheets through coordination modulation between MXene and MOF precursor (ZIF-8) followed with sulfidation. The MXene substrate coupled with the ZnS nanodots can synergistically accommodate volume variation of ZnS over charge–discharge to realize stable cyclability. As revealed by XPS characterizations and DFT calculations, the strong interfacial interaction between ZnS nanodots and MXene nanosheets can boost fast electron/lithium-ion transfer to achieve excellent electrochemical activity and kinetics for lithium storage. Thereby, the as-prepared ZnS nanodots/MXene hybrid exhibits a high capacity of 726.8 mAh g−1 at 30 mA g−1, superior cyclic stability (462.8 mAh g−1 after 1000 cycles at 0.5 A g−1), and excellent rate performance. The present results provide new insights into the understanding of the lithium storage mechanism of ZnS and the revealing of the effects of interfacial interaction on lithium storage performance enhancement.


2021 ◽  
Author(s):  
Bo Shan ◽  
Yuzhu Xiong

Abstract Developing the polymer-based thermal interface materials (TIMs) is one of the most promising approaches to address heat accumulation along with the functionalization, integration, and miniaturization of modern electronics, while it is still a great challenge to balance the thermal conductivity and mechanical properties. In this article, Fe ion-anchored graphene (FeG) is successfully fabricated by a facile in situ Fe reduction of graphene oxide (GO) approach, and then cellulose nanofiber (CNF)/FeG composites are prepared by vacuum-assisted filtration. FeG exhibits excellent dispersion and exfoliation in CNF/FeG composites, due to the strong interfacial interaction between CNF and FeG, such as hydrogen bonds and “Fe-O” complex binding. Thus, CNF/FeG composite has the largely improved thermal conductivity up to 30.2 W/mK at FeG content of 50 wt%, which is substantially increased by 1160% in comparison with that of pure CNF. In addition, the mechanical performances of CNF/FeG-50 are unexpectedly simultaneously enhanced to 244 MPa for tensile strength, 4.10% for elongation at break, and 9.5 GPa for Young’s modulus, outperforming pure CNF with increase of 137%, 33%, and 121%, respectively. This study provides a significant strategy for the design and construction of high thermal conductivity and high-performance polymeric TIMs in flexible and portable electronics.


2021 ◽  
pp. 002199832199591
Author(s):  
Mohammed Abdul Kadhim ◽  
Ehssan Al-Bermany

Graphene oxide nanosheets (GO) bring more interest in the tunable bandgap and enhanced the optical properties of nanocomposites. The developed method successfully mixed the PMMA- dissolved in dimethylformamide (DMF) with PVA dissolved in distilled water (DW) and DMF. New (PMMA-DMF)-(PVA-DW-DMF)/GO nanocomposite was successfully fabricated with various loading ratios of GO nanosheets for the first time. Several factors were applied to get fine desperation and homogeneous using the acoustic-solution casting method. Optical Microscope (OM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV–visible spectrophotometer were applied to investigate the structure and optical properties of the PMMA-PVA-GO nanocomposite. The OM images confirmed the fine homogenous matrix and GO distribution in the nanocomposites. FTIR spectra exhibited the most functional group of polymers and GO in the nanocomposites and strong interfacial interaction between the GO and matrix as confirmed by the shifting in the XRD patterns of the PMMA. The optical properties results of the PMMA-PVA/GO nanocomposites revealed an improvement up to 400% of the absorbance, 337% of the absorption coefficient, 51% of the refractive index, 210% of the real and 125% of the imaginary dielectric constants in terms to increase the GO concentrations, whereas the reduction in the transmittance and energy bandgap results of allowed and forbidden indirect transition were exhibited up to 9 and 16.4%, respectively. These results could grow for better and wide applications such as radiation shielding, specific optoelectronic applications, and filters ultraviolet also could use in landfilling the chemical, nuclear, and radioactive waste.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuyan Wang ◽  
Xin Huang ◽  
Xinxing Zhang

AbstractSelf-healing materials integrated with excellent mechanical strength and simultaneously high healing efficiency would be of great use in many fields, however their fabrication has been proven extremely challenging. Here, inspired by biological cartilage, we present an ultrarobust self-healing material by incorporating high density noncovalent bonds at the interfaces between the dentritic tannic acid-modified tungsten disulfide nanosheets and polyurethane matrix to collectively produce a strong interfacial interaction. The resultant nanocomposite material with interwoven network shows excellent tensile strength (52.3 MPa), high toughness (282.7 MJ m‒3, which is 1.6 times higher than spider silk and 9.4 times higher than metallic aluminum), high stretchability (1020.8%) and excellent healing efficiency (80–100%), which overturns the previous understanding of traditional noncovalent bonding self-healing materials where high mechanical robustness and healing ability are mutually exclusive. Moreover, the interfacical supramolecular crosslinking structure enables the functional-healing ability of the resultant flexible smart actuation devices. This work opens an avenue toward the development of ultrarobust self-healing materials for various flexible functional devices.


Author(s):  
Qi Tang ◽  
Lan Cao ◽  
Xiurui Lang ◽  
Yingxia Zong ◽  
Chengzhong Zong

In order to obtain higher thermoelectric and mechanical properties in non-polar thermoplastic vulcanizates (TPVs), the Butyl rubber/Polypropylene (TPVs)/hydroxylated graphene (HGE) composites with nanosheet network were prepared through masterbatch technique and based on thermodynamic calculations, using polypropylene-graft-maleic anhydride (PP-MA) as a compatibilizer. The FTIR and Raman spectra revealed the introduced maleic anhydride group on PP-MA can form strong interfacial interaction with hydroxyl-containing functional groups on HGE. Morphology study indicated the rubber particles in the composites occupied the most volume of the PP phase, as expected to hinder the aggregation of HGE and form the effective nanosheet network. The nanosheet network can be combined with the IIR cross-linked particles during the dynamic vulcanization process to improve the interface bonding between PP and IIR, thus increasing the tensile strength of TPVs. When the content of HGE reached the percolation threshold (2 wt.%), the nanosheet network of HGE was formed, and the AC conductivity, dielectric permittivity and thermal conductivity increased sharply. The prepared TPVs/HGE nanocomposites have significantly improved in mechanical properties, thermal properties and dielectric properties, which provides a guarantee for their potential application as multifunctional TPVs polymers.


Author(s):  
Jiapeng Liu ◽  
Wenchao Peng ◽  
Yang Li ◽  
Fengbao Zhang ◽  
Xiaobin Fan

Recently, rechargeable aqueous batteries have been regareded as a potential candidate for large-scale energy storage due to their intrinsic low cost, high operational safety, and environmental benignancy. Herein, we report...


Sign in / Sign up

Export Citation Format

Share Document