Global optimisation approach for designing high-efficiency piezoelectric beam-based energy harvesting devices

Nano Energy ◽  
2021 ◽  
pp. 106684
Author(s):  
Daniil Yurchenko ◽  
Lucas Queiroz Machado ◽  
Junlei Wang ◽  
Chris Bowen ◽  
Suleiman Sharkh ◽  
...  
2018 ◽  
Vol 30 (2) ◽  
pp. 323-332 ◽  
Author(s):  
Mohammad Reza Zamani Kouhpanji

This study represents effects of an elastic support on the power generation and storage capability of piezoelectric energy harvesting devices. The governing equations were derived and solved for a piezoelectric energy harvesting device made of elastic support, multilayer piezoelectric beam, and a proof mass at its free end. Furthermore, a Thevenin model for a rechargeable battery was considered for storage of the produced power of the piezoelectric energy harvesting device. Analyzing the time-domain and frequency-domain responses of the piezoelectric energy harvesting device on an elastic support shows that the elastic deformation of the support significantly reduces the power generation and storage capability of the device. It was also found that the power generation and storage capability of the piezoelectric energy harvesting device can be enhanced by choosing appropriate physical parameters of the piezoelectric beam even if the elastic properties of the support are poor relative to elastic properties of the piezoelectric beam. These results provide an insightful understanding for designing and material selection for the support in order to reach the highest possible power generation and storage capability for piezoelectric energy harvesting devices.


Author(s):  
Aneesh Koka ◽  
Henry A. Sodano

In this paper, novel ultra-long aligned array of Barium Titanate (BaTiO3) nanowires (NWs) was used to fabricate piezoelectric sensors and investigate their vibration sensing and energy harvesting potential. The acceleration sensing characteristics of the piezoelectric BaTiO3 NWs based sensor was presented by conducting vibration excitation experiments induced from an electromagnetic shaker. Two different top electrode configurations which include a melted Indium and a short cantilever Indium beam located over the BaTiO3 NWs surface were utilized to study the acceleration sensing and energy harvesting scope respectively. The results shown validate their excellent energy conversion capabilities and demonstrate linear behavior over a wide frequency spectrum which elucidates their potential to be developed as advanced sensors and high efficiency vibrational energy harvesting devices.


2010 ◽  
Vol 2 (2) ◽  
pp. 80-92
Author(s):  
Rupesh Patel ◽  
Atanas A. Popov ◽  
Stewart McWilliam

RSC Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 3363-3370
Author(s):  
Ang Yang ◽  
Yu Qiu ◽  
Dechao Yang ◽  
Kehong Lin ◽  
Shiying Guo

In this paper, experimental and theoretical studies of the piezoelectric effect of two-dimensional ZnO nanostructures, including straight nanosheets (SNSs) and curved nanosheets (CNSs) are conducted.


Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 168-178
Author(s):  
Marzia Quaglio ◽  
Daniyal Ahmed ◽  
Giulia Massaglia ◽  
Adriano Sacco ◽  
Valentina Margaria ◽  
...  

Sediment microbial fuel cells (SMFCs) are energy harvesting devices where the anode is buried inside marine sediment, while the cathode stays in an aerobic environment on the surface of the water. To apply this SCMFC as a power source, it is crucial to have an efficient power management system, leading to development of an effective energy harvesting technique suitable for such biological devices. In this work, we demonstrate an effective method to improve power extraction with SMFCs based on anodes alternation. We have altered the setup of a traditional SMFC to include two anodes working with the same cathode. This setup is compared with a traditional setup (control) and a setup that undergoes intermittent energy harvesting, establishing the improvement of energy collection using the anodes alternation technique. Control SMFC produced an average power density of 6.3 mW/m2 and SMFC operating intermittently produced 8.1 mW/m2. On the other hand, SMFC operating using the anodes alternation technique produced an average power density of 23.5 mW/m2. These results indicate the utility of the proposed anodes alternation method over both the control and intermittent energy harvesting techniques. The Anode Alternation can also be viewed as an advancement of the intermittent energy harvesting method.


2021 ◽  
Vol 31 (16) ◽  
pp. 2010172
Author(s):  
Jiaming Huang ◽  
Zhiwei Ren ◽  
Yaokang Zhang ◽  
Kuan Liu ◽  
Hengkai Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document