Copper/zinc chelation by clioquinol reduces spinal cord white matter damage and behavioral deficits in a murine MOG-induced multiple sclerosis model

2013 ◽  
Vol 54 ◽  
pp. 382-391 ◽  
Author(s):  
Bo Young Choi ◽  
Bong Geom Jang ◽  
Jin Hee Kim ◽  
Jae-Nam Seo ◽  
Guang Wu ◽  
...  
2019 ◽  
Vol 30 (1) ◽  
pp. 357-369 ◽  
Author(s):  
Ángela Bernabéu-Sanz ◽  
José Vicente Mollá-Torró ◽  
Susana López-Celada ◽  
Pedro Moreno López ◽  
Eduardo Fernández-Jover

2020 ◽  
pp. 135245852094149
Author(s):  
Laura Cacciaguerra ◽  
Maria A Rocca ◽  
Loredana Storelli ◽  
Marta Radaelli ◽  
Massimo Filippi

Background: The pathogenetic mechanisms sustaining neuroinflammatory disorders may originate from the cerebrospinal fluid. Objective: To evaluate white matter damage with diffusion tensor imaging and T1/T2-weighted ratio at progressive distances from the ventricular system in neuromyelitis optica spectrum disorders and multiple sclerosis. Methods: Fractional anisotropy, mean, axial, and radial diffusivity and T1/T2-weighted ratio maps were obtained from patients with seropositive neuromyelitis optica spectrum disorders, multiple sclerosis, and healthy controls ( n = 20 each group). White matter damage was assessed as function of ventricular distance within progressive concentric bands. Results: Compared to healthy controls, neuromyelitis optica spectrum disorders patients had similar fractional anisotropy, radial and axial diffusivity, increased mean diffusivity ( p = 0.009–0.013) and reduced T1/T2-weighted ratio ( p = 0.024–0.037) in all bands. In multiple sclerosis, gradient of percentage lesion volume and intra-lesional mean and axial diffusivity were higher in periventricular bands. Compared to healthy controls, multiple sclerosis patients had reduced fractional anisotropy ( p = 0.001–0.043) in periventricular bands, increased mean ( p < 0.001), radial ( p < 0.001–0.004), and axial diffusivity ( p = 0.002–0.008) and preserved T1/T2-weighted ratio in all bands. Conclusion: White matter damage is higher at periventricular level in multiple sclerosis and diffuse in neuromyelitis optica spectrum disorders. Fractional anisotropy preservation, associated with increased mean diffusivity and reduced T1/T2-weighted ratio may reflect astrocyte damage.


2015 ◽  
Vol 22 (5) ◽  
pp. 608-619 ◽  
Author(s):  
Marita Daams ◽  
Martijn D Steenwijk ◽  
Menno M Schoonheim ◽  
Mike P Wattjes ◽  
Lisanne J Balk ◽  
...  

Background: Cognitive deficits are common in multiple sclerosis. Most previous studies investigating the imaging substrate of cognitive deficits in multiple sclerosis included patients with relatively short disease durations and were limited to one modality/brain region. Objective: To identify the strongest neuroimaging predictors for cognitive dysfunction in a large cohort of patients with long-standing multiple sclerosis. Methods: Extensive neuropsychological testing and multimodal 3.0T MRI was performed in 202 patients with multiple sclerosis and 52 controls. Cognitive scores were compared between groups using Z-scores. Whole-brain, white matter, grey matter, deep grey matter and lesion volumes; cortical thickness, (juxta)cortical and cerebellar lesions; and extent and severity of diffuse white matter damage were measured. Stepwise linear regression was used to identify the strongest predictors for cognitive dysfunction. Results: All cognitive domains were affected in patients. Patients showed extensive atrophy, focal pathology and damage in up to 75% of the investigated white matter. Associations between imaging markers and average cognition were two times stronger in cognitively impaired patients than in cognitively preserved patients. The final model for average cognition consisted of deep grey matter DGMV volume and fractional anisotropy severity (adjusted R²=0.490; p<0.001). Conclusion: From all imaging markers, deep grey matter atrophy and diffuse white matter damage emerged as the strongest predictors for cognitive dysfunction in long-standing multiple sclerosis.


2009 ◽  
Vol 15 (1) ◽  
pp. 16-27 ◽  
Author(s):  
M Rausch ◽  
PS Tofts ◽  
P Lervik ◽  
AR Walmsley ◽  
A Mir ◽  
...  

Quantitative magnetization transfer magnetic resonance imaging (qMT-MRI) can be used to improve detection of white matter tissue damage in multiple sclerosis (MS) and animal models thereof. To study the correlation between MT parameters and tissue damage, the magnetization transfer ratio (MTR), the parameter f* (closely related to the bound proton fraction) and the bound proton transverse relaxation time T2B of lesions in a model of focal experimental autoimmune encephalomyelitis (EAE) were measured on a 7T animal scanner and data were compared with histological markers indicative for demyelination, axonal density, and tissue damage. A clear spatial correspondence was observed between reduced values of MTR and demyelination in this animal model. We observed two different levels of MTR and f* reduction for these lesions. One was characterized by a pronounced demyelination and the other corresponded to a more severe loss of the cellular matrix. Changes in f* were generally more pronounced than those of MTR in areas of demyelination. Moreover, a reduction of f* was already observed for tissue where MTR was virtually normal. No changes in T2B were observed for the lesions. We conclude that MTR and qMT mapping are efficient and reliable readouts for studying demyelination in animal models of MS, and that the analysis of regional f* might be even superior to the analysis of MTR values. Therefore, quantitative mapping of f* from human brains might also improve the detection of white matter damage in MS.


Author(s):  
Kenneth J. Levin ◽  
Philip H. Gutin ◽  
Glenda Y. Ross ◽  
Theodore L. Phillips

2017 ◽  
Vol 38 (10) ◽  
pp. 1934-1940 ◽  
Author(s):  
A. Hagiwara ◽  
M. Hori ◽  
K. Yokoyama ◽  
M. Nakazawa ◽  
R. Ueda ◽  
...  

2007 ◽  
Vol 17 ◽  
pp. 16S-21S ◽  
Author(s):  
Mohit Neema ◽  
James Stankiewicz ◽  
Ashish Arora ◽  
Venkata S.R. Dandamudi ◽  
Courtney E. Batt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document