zinc chelation
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 14)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shihao Liu ◽  
Chunxiu Zang ◽  
Jiaming Zhang ◽  
Shuang Tian ◽  
Yan Wu ◽  
...  

AbstractHere, this work presents an air-stable ultrabright inverted organic light-emitting device (OLED) by using zinc ion-chelated polyethylenimine (PEI) as electron injection layer. The zinc chelation is demonstrated to increase the conductivity of the PEI by three orders of magnitude and passivate the polar amine groups. With these physicochemical properties, the inverted OLED shows a record-high external quantum efficiency of 10.0% at a high brightness of 45,610 cd m−2 and can deliver a maximum brightness of 121,865 cd m−2. Besides, the inverted OLED is also demonstrated to possess an excellent air stability (humidity, 35%) with a half-brightness operating time of 541 h @ 1000 cd m−2 without any protection nor encapsulation.


2021 ◽  
Author(s):  
Danielle M. Vermilyea ◽  
Alex W. Crocker ◽  
Alex H. Gifford ◽  
Deborah A. Hogan

Pseudomonas aeruginosa induces pathways indicative of low zinc availability in the cystic fibrosis (CF) lung environment. To learn more about P. aeruginosa zinc access in CF, we grew P. aeruginosa strain PAO1 directly in expectorated CF sputum. The P. aeruginosa Zur transcriptional repressor controls the response to low intracellular zinc, and we used the NanoString methodology to monitor levels of Zur-regulated transcripts including those encoding a zincophore system, a zinc importer, and paralogs of zinc containing proteins that do not require zinc for activity. Zur-controlled transcripts were induced in sputum-grown P. aeruginosa compared to control cultures, but not if the sputum was amended with zinc. Amendment of sputum with ferrous iron did not reduce expression of Zur-regulated genes. A reporter fusion to a Zur-regulated promoter had variable activity in P. aeruginosa grown in sputum from different donors, and this variation inversely correlated with sputum zinc concentrations. Recombinant human calprotectin (CP), a divalent-metal binding protein released by neutrophils, was sufficient to induce a zinc-starvation response in P. aeruginosa grown in laboratory medium or zinc-amended CF sputum indicating that CP is functional in the sputum environment. Zinc metalloproteases comprise a large fraction of secreted zinc-binding P. aeruginosa proteins. Here we show that recombinant CP inhibited both LasB-mediated casein degradation and LasA-mediated lysis of Staphylococcus aureus, which was reversible with added zinc. These studies reveal the potential for CP-mediated zinc chelation to post-translationally inhibit zinc metalloprotease activity and thereby impact the protease-dependent physiology and/or virulence of P. aeruginosa in the CF lung environment. Importance The factors that contribute to worse outcomes in individuals with cystic fibrosis (CF) with chronic Pseudomonas aeruginosa infections are not well understood. Therefore, there is a need to understand environmental factors within the CF airway that contribute to P. aeruginosa colonization and infection. We demonstrate that growing bacteria in CF sputum induces a zinc-starvation response that inversely correlates with sputum zinc levels. Additionally, both calprotectin and a chemical zinc chelator inhibit the proteolytic activities of LasA and LasB proteases suggesting that extracellular zinc chelators can influence proteolytic activity and thus P. aeruginosa virulence and nutrient acquisition in vivo.


2021 ◽  
Vol 5 (7) ◽  
pp. 1922-1932
Author(s):  
Jeanne F. Rivera ◽  
April J. Baral ◽  
Fatima Nadat ◽  
Grace Boyd ◽  
Rachael Smyth ◽  
...  

Abstract Calreticulin (CALR) is mutated in the majority of JAK2/MPL-unmutated myeloproliferative neoplasms (MPNs). Mutant CALR (CALRdel52) exerts its effect by binding to the thrombopoietin receptor MPL to cause constitutive activation of JAK-STAT signaling. In this study, we performed an extensive mutagenesis screen of the CALR globular N-domain and revealed 2 motifs critical for CALRdel52 oncogenic activity: (1) the glycan-binding lectin motif and (2) the zinc-binding domain. Further analysis demonstrated that the zinc-binding domain was essential for formation of CALRdel52 multimers, which was a co-requisite for MPL binding. CALRdel52 variants incapable of binding zinc were unable to homomultimerize, form CALRdel52-MPL heteromeric complexes, or stimulate JAK-STAT signaling. Finally, treatment with zinc chelation disrupted CALRdel52-MPL complexes in hematopoietic cells in conjunction with preferential eradication of cells expressing CALRdel52 relative to cells expressing other MPN oncogenes. In addition, zinc chelators exhibited a therapeutic effect in preferentially impairing growth of CALRdel52-mutant erythroblasts relative to unmutated erythroblasts in primary cultures of MPN patients. Together, our data implicate zinc as an essential cofactor for CALRdel52 oncogenic activity by enabling CALRdel52 multimerization and interaction with MPL, and suggests that perturbation of intracellular zinc levels may represent a new approach to abrogate the oncogenic activity of CALRdel52 in the treatment of MPNs.


2021 ◽  
Author(s):  
Danielle M Vermilyea ◽  
Alex W. Crocker ◽  
Alex H Gifford ◽  
Deborah A. Hogan

Pseudomonas aeruginosa induces pathways indicative of low zinc availability in the cystic fibrosis (CF) lung environment. To learn more about P. aeruginosa zinc access in CF, we grew P. aeruginosa strain PAO1 directly in expectorated CF sputum. The P. aeruginosa Zur transcriptional repressor controls the response to low intracellular zinc, and we used the NanoString methodology to monitor levels of Zur-regulated transcripts including those encoding a zincophore system, a zinc importer, and paralogs of zinc containing proteins that do not require zinc for activity. Zur-controlled transcripts were induced in sputum-grown P. aeruginosa compared to control cultures, but not if the sputum was amended with zinc. Amendment of sputum with ferrous iron did not reduce expression of Zur-regulated genes. A reporter fusion to a Zur-regulated promoter had variable activity in P. aeruginosa grown in sputum from different donors, and this variation inversely correlated with sputum zinc concentrations. Recombinant human calprotectin (CP), a divalent-metal binding protein released by neutrophils, was sufficient to induce a zinc-starvation response in P. aeruginosa grown in laboratory medium or zinc-amended CF sputum indicating that CP is functional in the sputum environment. Zinc metalloproteases comprise a large fraction of secreted zinc-binding P. aeruginosa proteins. Here we show that recombinant CP inhibited both LasB-mediated casein degradation and LasA-mediated lysis of Staphylococcus aureus, which was reversible with added zinc. These studies reveal the potential for CP-mediated zinc chelation to post-translationally inhibit zinc metalloprotease activity and thereby impact the protease-dependent physiology and/or virulence of P. aeruginosa in the CF lung environment.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Florelle Domart ◽  
Peter Cloetens ◽  
Stéphane Roudeau ◽  
Asuncion Carmona ◽  
Emeline Verdier ◽  
...  

Zinc and copper are involved in neuronal differentiation and synaptic plasticity but the molecular mechanisms behind these processes are still elusive due in part to the difficulty of imaging trace metals together with proteins at the synaptic level. We correlate stimulated-emission-depletion microscopy of proteins and synchrotron X-ray fluorescence imaging of trace metals, both performed with 40 nm spatial resolution, on primary rat hippocampal neurons. We reveal the co-localization at the nanoscale of zinc and tubulin in dendrites with a molecular ratio of about one zinc atom per tubulin-αβ dimer. We observe the co-segregation of copper and F-actin within the nano-architecture of dendritic protrusions. In addition, zinc chelation causes a decrease in the expression of cytoskeleton proteins in dendrites and spines. Overall, these results indicate new functions for zinc and copper in the modulation of the cytoskeleton morphology in dendrites, a mechanism associated to neuronal plasticity and memory formation.


2020 ◽  
Vol 11 (17) ◽  
pp. 2753-2760 ◽  
Author(s):  
Joana S. Cristóvão ◽  
António J. Figueira ◽  
Ana P. Carapeto ◽  
Mário S. Rodrigues ◽  
Isabel Cardoso ◽  
...  

2020 ◽  
Vol 21 (9) ◽  
pp. 3375
Author(s):  
Bo Young Choi ◽  
Jeong Hyun Jeong ◽  
Jae-Won Eom ◽  
Jae-Young Koh ◽  
Yang-Hee Kim ◽  
...  

Previous studies in our lab revealed that chemical zinc chelation or zinc transporter 3 (ZnT3) gene deletion suppresses the clinical features and neuropathological changes associated with experimental autoimmune encephalomyelitis (EAE). In addition, although protective functions are well documented for AMP-activated protein kinase (AMPK), paradoxically, disease-promoting effects have also been demonstrated for this enzyme. Recent studies have demonstrated that AMPK contributes to zinc-induced neurotoxicity and that 1H10, an inhibitor of AMPK, reduces zinc-induced neuronal death and protects against oxidative stress, excitotoxicity, and apoptosis. Here, we sought to evaluate the therapeutic efficacy of 1H10 against myelin oligodendrocyte glycoprotein 35-55-induced EAE. 1H10 (5 μg/kg) was intraperitoneally injected once per day for the entire experimental course. Histological evaluation was performed three weeks after the initial immunization. We found that 1H10 profoundly reduced the severity of the induced EAE and that there was a remarkable suppression of demyelination, microglial activation, and immune cell infiltration. 1H10 also remarkably inhibited EAE-associated blood-brain barrier (BBB) disruption, MMP-9 activation, and aberrant synaptic zinc patch formation. Furthermore, the present study showed that long-term treatment with 1H10 also reduced the clinical course of EAE. Therefore, the present study suggests that zinc chelation and AMPK inhibition with 1H10 may have great therapeutic potential for the treatment of multiple sclerosis.


2020 ◽  
Vol 10 (6) ◽  
pp. 2041
Author(s):  
Lei Chen ◽  
Xuanri Shen ◽  
Guanghua Xia

To investigate the effect of the molecular weight of tilapia skin collagen peptide fractions on their zinc chelation capacity and the bioaccessibility of their zinc complexes, we evaluated the zinc-chelating ability of different molecular weight peptide, the solubility, and the stability of the complexes during simulated in vitro digestion. Low molecular weight peptide (P1) exhibited a higher zinc-chelating ability, which can be attributed to the variety of metal chelate amino acid residues. The highest solubility and the lowest release of zinc during peptic digestion for the P1-zinc complex and the zinc binding to P1 were retained at approximately 50% after peptic-pancreatic digestion. Fourier transform infrared spectroscopy indicated the primary involvement of the N-H group in all peptide-zinc complexes. This finding suggests that low molecular weight peptidefraction with strong zinc chelation ability can be used as delivery agents to improve zinc bioaccessibility.


2019 ◽  
Author(s):  
Florelle Domart ◽  
Peter Cloetens ◽  
Stéphane Roudeau ◽  
Asuncion Carmona ◽  
Emeline Verdier ◽  
...  

AbstractZinc and copper are involved in neuronal differentiation and synaptic plasticity but the molecular mechanisms behind these processes are still elusive due in part to the difficulty of imaging trace metals together with proteins at the synaptic level. We correlate stimulated emission depletion (STED) microscopy of proteins and synchrotron X-ray fluorescence (SXRF) imaging of trace metals, both performed with 40 nm spatial resolution, on primary rat hippocampal neurons. We achieve a detection limit for zinc of 14 zeptogram (10-21 g) per pixel. We reveal the co-localization at the nanoscale of zinc and tubulin in dendrites with a molecular ratio of about one zinc atom per tubulin-αβ dimer. We observe the co-segregation of copper and F-actin within the nano-architecture of dendritic protrusions. In addition, zinc chelation causes a decrease in the expression of cytoskeleton proteins in dendrites and spines. Overall, these results indicate new functions for zinc and copper in the modulation of the cytoskeleton morphology in dendrites, a mechanism associated to neuronal plasticity and memory formation.


Sign in / Sign up

Export Citation Format

Share Document