scholarly journals Differential electrophysiological and morphological alterations of thalamostriatal and corticostriatal projections in the R6/2 mouse model of Huntington's disease

2017 ◽  
Vol 108 ◽  
pp. 29-44 ◽  
Author(s):  
Anna Parievsky ◽  
Cindy Moore ◽  
Talia Kamdjou ◽  
Carlos Cepeda ◽  
Charles K. Meshul ◽  
...  
2021 ◽  
Author(s):  
Danielle A. Simmons ◽  
Brian D. Mills ◽  
Robert R. Butler III ◽  
Jason Kuan ◽  
Tyne L. M. McHugh ◽  
...  

AbstractHuntington’s disease (HD) is caused by an expansion of the CAG repeat in the huntingtin gene leading to preferential neurodegeneration of the striatum. Disease-modifying treatments are not yet available to HD patients and their development would be facilitated by translatable pharmacodynamic biomarkers. Multi-modal magnetic resonance imaging (MRI) and plasma cytokines have been suggested as disease onset/progression biomarkers, but their ability to detect treatment efficacy is understudied. This study used the R6/2 mouse model of HD to assess if structural neuroimaging and biofluid assays can detect treatment response using as a prototype the small molecule p75NTR ligand LM11A-31, shown previously to reduce HD phenotypes in these mice. LM11A-31 alleviated volume reductions in multiple brain regions, including striatum, of vehicle-treated R6/2 mice relative to wild-types (WTs), as assessed with in vivo MRI. LM11A-31 also normalized changes in diffusion tensor imaging (DTI) metrics and diminished increases in certain plasma cytokine levels, including tumor necrosis factor-alpha and interleukin-6, in R6/2 mice. Finally, R6/2-vehicle mice had increased urinary levels of the p75NTR extracellular domain (ecd), a cleavage product released with pro-apoptotic ligand binding that detects the progression of other neurodegenerative diseases; LM11A-31 reduced this increase. These results are the first to show that urinary p75NTR-ecd levels are elevated in an HD mouse model and can be used to detect therapeutic effects. These data also indicate that multi-modal MRI and plasma cytokine levels may be effective pharmacodynamic biomarkers and that using combinations of these markers would be a viable and powerful option for clinical trials.


2015 ◽  
Vol 44 ◽  
pp. 121-127 ◽  
Author(s):  
Kuo-Hsuan Chang ◽  
Yih-Ru Wu ◽  
Yi-Chun Chen ◽  
Chiung-Mei Chen

2006 ◽  
Vol 5 (3) ◽  
pp. 483-492 ◽  
Author(s):  
Tsz M. Tsang ◽  
Ben Woodman ◽  
Gerard A. Mcloughlin ◽  
Julian L. Griffin ◽  
Sarah J. Tabrizi ◽  
...  

FEBS Open Bio ◽  
2021 ◽  
Author(s):  
Masayo Hashimoto ◽  
Kenichi Watanabe ◽  
Kan Miyoshi ◽  
Yukako Koyanagi ◽  
Jun Tadano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document