scholarly journals Modified minimum variance imaging of Lamb waves for damage localization in aluminum plates and composite laminates

2021 ◽  
pp. 102574
Author(s):  
Jiadong Hua ◽  
Han Zhang ◽  
Yonghao Miao ◽  
Jing Lin
2017 ◽  
Vol 165 ◽  
pp. 138-147 ◽  
Author(s):  
Bin Yang ◽  
Fu-Zhen Xuan ◽  
Shaojie Chen ◽  
Shaoping Zhou ◽  
Yang Gao ◽  
...  

2018 ◽  
Vol 18 (1) ◽  
pp. 334-344 ◽  
Author(s):  
Zhenhua Tian ◽  
Lingyu Yu ◽  
Xiaoyi Sun ◽  
Bin Lin

Fiber Bragg gratings are known being immune to electromagnetic interference and emerging as Lamb wave sensors for structural health monitoring of plate-like structures. However, their application for damage localization in large areas has been limited by their direction-dependent sensor factor. This article addresses such a challenge and presents a robust damage localization method for fiber Bragg grating Lamb wave sensing through the implementation of adaptive phased array algorithms. A compact linear fiber Bragg grating phased array is configured by uniformly distributing the fiber Bragg grating sensors along a straight line and axially in parallel to each other. The Lamb wave imaging is then performed by phased array algorithms without weighting factors (conventional delay-and-sum) and with adaptive weighting factors (minimum variance). The properties of both imaging algorithms, as well as the effects of fiber Bragg grating’s direction-dependent sensor factor, are characterized, analyzed, and compared in details. The results show that this compact fiber Bragg grating array can precisely locate damage in plates, while the comparisons show that the minimum variance method has a better imaging resolution than that of the delay-and-sum method and is barely affected by fiber Bragg grating’s direction-dependent sensor factor. Laboratory tests are also performed with a four–fiber Bragg grating array to detect simulated defects at different directions. Both delay-and-sum and minimum variance methods can successfully locate defects at different positions, and their results are consistent with analytical predictions.


2019 ◽  
Vol 19 (14) ◽  
pp. 5784-5791 ◽  
Author(s):  
Chenhui Su ◽  
Mingshun Jiang ◽  
Shanshan Lv ◽  
Shizeng Lu ◽  
Lei Zhang ◽  
...  

2006 ◽  
Vol 326-328 ◽  
pp. 1697-1700
Author(s):  
Heoung Jae Chun ◽  
Choong Hee Yi ◽  
Joon Hyung Byun

The embedded structural health monitoring system is envisioned to be an important factor of future structural systems. One of the many attractions of in situ health monitoring system is its capability to inspect the structural systems in less intrusive way over many other visual inspections which require disassembly of built up structures when some indications have appeared that damages have occurred in the structural systems The vacuum assisted resin transfer molding (VARTM) process is used to fabricate woven-glass/phenol composite specimens which have the PZT sensor array embedded in them. The embedded piezoceramic (PZT) sensors are used as both transmitters and receivers. A damage identification approach is developed for a woven-glass/phenol composite laminates with known localized defects. Propagation of the Lamb waves in laminates and their interactions with the defects are examined. Lamb waves are generated by the high power ultrasonic analyzer. A real time active diagnosis system is therefore established. The results obtained show that satisfactory detection accuracy could be achieved by proposed method.


Computing ◽  
2019 ◽  
Vol 101 (6) ◽  
pp. 679-692 ◽  
Author(s):  
Hanfei Zhang ◽  
Yu Lu ◽  
Shiwei Ma ◽  
Shuhao Cao ◽  
Qingwei Xia ◽  
...  

2012 ◽  
Vol 19 (4) ◽  
pp. 585-596 ◽  
Author(s):  
Xinglong Liu ◽  
Zhongwei Jiang ◽  
Zhonghong Yan

Damage localization is a primary objective of damage identification. This paper presents damage localization in beam structure using impact-induced Lamb wave and Frequency Slice Wavelet Transform (FSWT). FSWT is a new time-frequency analysis method and has the adaptive resolution feature. The time-frequency resolution is a vital factor affecting the accuracy of damage localization. In FSWT there is a unique parameter controlling the time-frequency resolution. To improve the accuracy of damage localization, a generalized criterion is proposed to determine the parameter value for achieving a suitable time-frequency resolution. For damage localization, the group velocity dispersion curve (GVDC) of A0Lamb waves in beam is first accurately estimated using FSWT, and then the arrival times of reflection wave from the crack for some individual frequency components are determined. An average operation on the calculated propagation distance is then performed to further improve the accuracy of damage localization.


Sign in / Sign up

Export Citation Format

Share Document