scholarly journals Analyzing human gait and posture by combining feature selection and kernel methods

2011 ◽  
Vol 74 (16) ◽  
pp. 2665-2674 ◽  
Author(s):  
Albert Samà ◽  
Cecilio Angulo ◽  
Diego Pardo ◽  
Andreu Català ◽  
Joan Cabestany
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Abeer A. Badawi ◽  
Ahmad Al-Kabbany ◽  
Heba A. Shaban

This research addresses the challenge of recognizing human daily activities using surface electromyography (sEMG) and wearable inertial sensors. Effective and efficient recognition in this context has emerged as a cornerstone in robust remote health monitoring systems, among other applications. We propose a novel pipeline that can attain state-of-the-art recognition accuracies on a recent-and-standard dataset—the Human Gait Database (HuGaDB). Using wearable gyroscopes, accelerometers, and electromyography sensors placed on the thigh, shin, and foot, we developed an approach that jointly performs sensor fusion and feature selection. Being done jointly, the proposed pipeline empowers the learned model to benefit from the interaction of features that might have been dropped otherwise. Using statistical and time-based features from heterogeneous signals of the aforementioned sensor types, our approach attains a mean accuracy of 99.8%, which is the highest accuracy on HuGaDB in the literature. This research underlines the potential of incorporating EMG signals especially when fusion and selection are done simultaneously. Meanwhile, it is valid even with simple off-the-shelf feature selection methods such the Sequential Feature Selection family of algorithms. Moreover, through extensive simulations, we show that the left thigh is a key placement for attaining high accuracies. With one inertial sensor on that single placement alone, we were able to achieve a mean accuracy of 98.4%. The presented in-depth comparative analysis shows the influence that every sensor type, position, and placement can have on the attained recognition accuracies—a tool that can facilitate the development of robust systems, customized to specific scenarios and real-life applications.


Author(s):  
Isabelle Guyon ◽  
Hans-Marcus Bitter ◽  
Zulfikar Ahmed ◽  
Michael Brown ◽  
Jonathan Heller

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Hua ◽  
Chanqin Quan

The state-of-the-art methods for protein-protein interaction (PPI) extraction are primarily based on kernel methods, and their performances strongly depend on the handcraft features. In this paper, we tackle PPI extraction by using convolutional neural networks (CNN) and propose a shortest dependency path based CNN (sdpCNN) model. The proposed method(1)only takes the sdp and word embedding as input and(2)could avoid bias from feature selection by using CNN. We performed experiments on standard Aimed and BioInfer datasets, and the experimental results demonstrated that our approach outperformed state-of-the-art kernel based methods. In particular, by tracking the sdpCNN model, we find that sdpCNN could extract key features automatically and it is verified that pretrained word embedding is crucial in PPI task.


2021 ◽  
Author(s):  
Mathivanan B ◽  
Perumal P

Abstract Gait is an individual biometric behavior which can be detected based on distance which has different submissions in social security, forensic detection and crime prevention. Hence, in this paper, Advanced Deep Belief Neural Network with Black Widow Optimization (ADBNN-BWO) Algorithm is developed to identify the human emotions by human walking style images. This proposed methodology is working based on four stages like pre-processing, feature extraction, feature selection and classification. For the pre-processing, contrast enhancement median filter is used and Hu Moments, GLCM, Fast Scale-invariant feature transform (F-SIFT), in addition skeleton features are used for the feature extraction. To extract the features efficiently, the feature extraction algorithm can be often very essential calculation. After that, feature selection is performed. Then the classification process is done by utilizing the proposed ADBNN-BWO Algorithm. Based on the proposed method, the human gait recognition is achieved which utilized to identify the emotions from the walking style. The proposed method is validated by using the open source gait databases. The proposed method is implemented in MATLAB platform and their corresponding performances/outputs are evaluated. Moreover, the statistical measures of proposed method are also determined and compared with the existing method as Artificial Neural Network (ANN), Mayfly algorithm with Particle Swarm Optimization (MA-PSO), Recurrent Neural Network -PSO (RNN-PSO) and Adaptive Neuro Fuzzy Inference System (ANFIS) respectively.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7584
Author(s):  
Faizan Saleem ◽  
Muhammad Attique Khan ◽  
Majed Alhaisoni ◽  
Usman Tariq ◽  
Ammar Armghan ◽  
...  

Human Gait Recognition (HGR) is a biometric technique that has been utilized for security purposes for the last decade. The performance of gait recognition can be influenced by various factors such as wearing clothes, carrying a bag, and the walking surfaces. Furthermore, identification from differing views is a significant difficulty in HGR. Many techniques have been introduced in the literature for HGR using conventional and deep learning techniques. However, the traditional methods are not suitable for large datasets. Therefore, a new framework is proposed for human gait recognition using deep learning and best feature selection. The proposed framework includes data augmentation, feature extraction, feature selection, feature fusion, and classification. In the augmentation step, three flip operations were used. In the feature extraction step, two pre-trained models were employed, Inception-ResNet-V2 and NASNet Mobile. Both models were fine-tuned and trained using transfer learning on the CASIA B gait dataset. The features of the selected deep models were optimized using a modified three-step whale optimization algorithm and the best features were chosen. The selected best features were fused using the modified mean absolute deviation extended serial fusion (MDeSF) approach. Then, the final classification was performed using several classification algorithms. The experimental process was conducted on the entire CASIA B dataset and achieved an average accuracy of 89.0. Comparison with existing techniques showed an improvement in accuracy, recall rate, and computational time.


2022 ◽  
Vol 70 (1) ◽  
pp. 343-360
Author(s):  
Asif Mehmood ◽  
Muhammad Attique Khan ◽  
Usman Tariq ◽  
Chang-Won Jeong ◽  
Yunyoung Nam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document