Online fault diagnosis method based on Incremental Support Vector Data Description and Extreme Learning Machine with incremental output structure

2014 ◽  
Vol 128 ◽  
pp. 224-231 ◽  
Author(s):  
Gang Yin ◽  
Ying-Tang Zhang ◽  
Zhi-Ning Li ◽  
Guo-Quan Ren ◽  
Hong-Bo Fan
2019 ◽  
Vol 9 (8) ◽  
pp. 1676 ◽  
Author(s):  
Tan ◽  
Fu ◽  
Wang ◽  
Xue ◽  
Hu ◽  
...  

Rolling bearing is of great importance in modern industrial products, the failure of which may result in accidents and economic losses. Therefore, fault diagnosis of rolling bearing is significant and necessary and can enhance the reliability and efficiency of mechanical systems. Therefore, a novel fault diagnosis method for rolling bearing based on semi-supervised clustering and support vector data description (SVDD) with adaptive parameter optimization and improved decision strategy is proposed in this study. First, variational mode decomposition (VMD) was applied to decompose the vibration signals into sets of intrinsic mode functions (IMFs), where the decomposing mode number K was determined by the central frequency observation method. Next, fuzzy entropy (FuzzyEn) values of all IMFs were calculated to construct the feature vectors of different types of faults. Later, training samples were clustered with semi-supervised fuzzy C-means clustering (SSFCM) for fully exploiting the information inside samples, whereupon a small number of labeled samples were able to provide sufficient data distribution information for subsequent SVDD algorithms and improve its recognition ability. Afterwards, SVDD with improved decision strategy (ID-SVDD) that combined with k-nearest neighbor was proposed to establish diagnostic model. Simultaneously, the optimal parameters C and σ for ID-SVDD were searched by the newly proposed sine cosine algorithm improved with adaptive updating strategy (ASCA). Finally, the proposed diagnosis method was applied for engineering application as well as contrastive analysis. The obtained results reveal that the proposed method exhibits the best performance in all evaluation metrics and has advantages over other comparison methods in both precision and stability.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 137-145
Author(s):  
Yubin Xia ◽  
Dakai Liang ◽  
Guo Zheng ◽  
Jingling Wang ◽  
Jie Zeng

Aiming at the irregularity of the fault characteristics of the helicopter main reducer planetary gear, a fault diagnosis method based on support vector data description (SVDD) is proposed. The working condition of the helicopter is complex and changeable, and the fault characteristics of the planetary gear also show irregularity with the change of working conditions. It is impossible to diagnose the fault by the regularity of a single fault feature; so a method of SVDD based on Gaussian kernel function is used. By connecting the energy characteristics and fault characteristics of the helicopter main reducer running state signal and performing vector quantization, the planetary gear of the helicopter main reducer is characterized, and simultaneously couple the multi-channel information, which can accurately characterize the operational state of the planetary gear’s state.


2015 ◽  
Vol 727-728 ◽  
pp. 872-875
Author(s):  
Wen Bo Na ◽  
Qing Feng Jiang ◽  
Zhi Wei Su

In order to improve the accuracy of diagnosis pumping, and accelerate the speed of diagnosis, a fault diagnosis model based on improved extreme learning machine (RWELM) was proposed. Firstly, it extracted the energy characteristic eigenvector of dynamometer cards of an oilfield in northern Shanxi by using wavelet packet decomposition method. Then through simulation of fault diagnosis, and compare with the extreme learning machine (ELM), RBF neural networks and support vector machine (SVM). The experimental results show that the accuracy and the speed of fault diagnosis based on the RWELM are better than the ELM, RBF neural network and SVM.


2012 ◽  
Vol 490-495 ◽  
pp. 1029-1033 ◽  
Author(s):  
Ling Jun Li ◽  
Wen Ping Lei ◽  
Jie Han ◽  
Wang Shen Hao

Support vector data description (SVDD) can be used to solve the problems of the insufficient fault samples in the fault diagnosis field. Vector-bispectrum is the bispectrum analysis method based on the full vector spectrum information fusion. It can be used to fuse the double-channel information of the rotary machines effectively and reflect the nonlinear properties in the signals more completely and accurately. In order to realize the aim that the faults of the machines can be diagnosed effectually and intelligently under the situation of the lack of the fault samples, the intelligent diagnosis method of the faults by combining the vector-bispectrum with SVDD is put forward. By using the vector-bispectrum to process the signals and extract the characteristic vectors, which can be used as the input parameters of SVDD. The classification model is set up and therefore the running states of the machines can also be classified. The method is applied to the gearbox fault diagnosis. The results indicate that the method can be effectively used to extract the characteristic information of the gearbox signals and increase the accuracy of SVDD in the fault diagnosis.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Hui Yi ◽  
Zehui Mao ◽  
Bin Jiang ◽  
Cuimei Bo ◽  
Yufang Liu ◽  
...  

Faulty samples are much harder to acquire than normal samples, especially in complicated systems. This leads to incompleteness for training sample types and furthermore a decrease of diagnostic accuracy. In this paper, the relationship between sample-type incompleteness and the classifier-based diagnostic accuracy is discussed first. Then, a support vector data description-based approach, which has taken the effects of sample-type incompleteness into consideration, is proposed to refine the construction of fault regions and increase the diagnostic accuracy for the condition of incomplete sample types. The effectiveness of the proposed method was validated on both a Gaussian distributed dataset and a practical dataset. Satisfactory results have been obtained.


Sign in / Sign up

Export Citation Format

Share Document