Modeling and control with neural networks for a magnetic levitation system

2017 ◽  
Vol 227 ◽  
pp. 113-121 ◽  
Author(s):  
José de Jesús Rubio ◽  
Lixian Zhang ◽  
Edwin Lughofer ◽  
Panuncio Cruz ◽  
Ahmed Alsaedi ◽  
...  
2019 ◽  
pp. 41-44
Author(s):  
Syed Mamun R Rasid ◽  
Md. Belayet Hossain ◽  
Md. Emdadul Hoque ◽  
Md. Ariful Azam Arif ◽  
Md. Sarikat Ali Sarder

2021 ◽  
Vol 11 (6) ◽  
pp. 2535
Author(s):  
Bruno E. Silva ◽  
Ramiro S. Barbosa

In this article, we designed and implemented neural controllers to control a nonlinear and unstable magnetic levitation system composed of an electromagnet and a magnetic disk. The objective was to evaluate the implementation and performance of neural control algorithms in a low-cost hardware. In a first phase, we designed two classical controllers with the objective to provide the training data for the neural controllers. After, we identified several neural models of the levitation system using Nonlinear AutoRegressive eXogenous (NARX)-type neural networks that were used to emulate the forward dynamics of the system. Finally, we designed and implemented three neural control structures: the inverse controller, the internal model controller, and the model reference controller for the control of the levitation system. The neural controllers were tested on a low-cost Arduino control platform through MATLAB/Simulink. The experimental results proved the good performance of the neural controllers.


2021 ◽  
Vol 11 (12) ◽  
pp. 5330
Author(s):  
Gisela Pujol-Vázquez ◽  
Alessandro N. Vargas ◽  
Saleh Mobayen ◽  
Leonardo Acho

This paper describes how to construct a low-cost magnetic levitation system (MagLev). The MagLev has been intensively used in engineering education, allowing instructors and students to learn through hands-on experiences of essential concepts, such as electronics, electromagnetism, and control systems. Built from scratch, the MagLev depends only on simple, low-cost components readily available on the market. In addition to showing how to construct the MagLev, this paper presents a semi-active control strategy that seems novel when applied to the MagLev. Experiments performed in the laboratory provide comparisons of the proposed control scheme with the classical PID control. The corresponding real-time experiments illustrate both the effectiveness of the approach and the potential of the MagLev for education.


ICCAS 2010 ◽  
2010 ◽  
Author(s):  
Jeong-Min Jo ◽  
Young-Jae Han ◽  
Chang-Young Lee ◽  
Bu-Byung Kang ◽  
Kyung-Min Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document