The existence and exponential stability of periodic solution for coupled systems on networks without strong connectedness

2018 ◽  
Vol 313 ◽  
pp. 206-219 ◽  
Author(s):  
Pengfei Wang ◽  
Guangshuai Wang ◽  
Huan Su
Author(s):  
Xin Meng ◽  
Baoping Jiang ◽  
Cunchen Gao

This paper considers the Mittag-Leffler projective synchronization problem of fractional-order coupled systems (FOCS) on the complex networks without strong connectedness by fractional sliding mode control (SMC). Combining the hierarchical algorithm with the graph theory, a new SMC strategy is designed to realize the projective synchronization between the master system and the slave system, which covers the globally complete synchronization and the globally anti-synchronization. In addition, some novel criteria are derived to guarantee the Mittag-Leffler stability of the projective synchronization error system. Finally, a numerical example is given to illustrate the validity of the proposed method.


Author(s):  
Qianhong Zhang ◽  
Lihui Yang ◽  
Daixi Liao

Existence and exponential stability of a periodic solution for fuzzy cellular neural networks with time-varying delays Fuzzy cellular neural networks with time-varying delays are considered. Some sufficient conditions for the existence and exponential stability of periodic solutions are obtained by using the continuation theorem based on the coincidence degree and the differential inequality technique. The sufficient conditions are easy to use in pattern recognition and automatic control. Finally, an example is given to show the feasibility and effectiveness of our methods.


2016 ◽  
Vol 09 (02) ◽  
pp. 1650028
Author(s):  
Zhijian Yao

This paper is concerned with a host-macroparasite difference model. By applying the contraction mapping fixed point theorem, we prove the existence of unique almost periodic positive solution. Moreover, we investigate the exponential stability of almost periodic solution by means of Lyapunov functional.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Jinxiang Cai ◽  
Zhenkun Huang ◽  
Honghua Bin

We present stability analysis of delayed Wilson-Cowan networks on time scales. By applying the theory of calculus on time scales, the contraction mapping principle, and Lyapunov functional, new sufficient conditions are obtained to ensure the existence and exponential stability of periodic solution to the considered system. The obtained results are general and can be applied to discrete-time or continuous-time Wilson-Cowan networks.


Sign in / Sign up

Export Citation Format

Share Document