Further synchronization in finite time analysis for time-varying delayed fractional order memristive competitive neural networks with leakage delay

2018 ◽  
Vol 317 ◽  
pp. 110-126 ◽  
Author(s):  
A. Pratap ◽  
R. Raja ◽  
Jinde Cao ◽  
G. Rajchakit ◽  
Fuad E. Alsaadi
Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1146
Author(s):  
Călin-Adrian Popa ◽  
Eva Kaslik

This paper studies fractional-order neural networks with neutral-type delay, leakage delay, and time-varying delays. A sufficient condition which ensures the finite-time synchronization of these networks based on a state feedback control scheme is deduced using the generalized Gronwall–Bellman inequality. Then, a different state feedback control scheme is employed to realize the finite-time Mittag–Leffler synchronization of these networks by using the fractional-order extension of the Lyapunov direct method for Mittag–Leffler stability. Two numerical examples illustrate the feasibility and the effectiveness of the deduced sufficient criteria.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-27
Author(s):  
Meng Hui ◽  
Chen Wei ◽  
Jiao Zhang ◽  
Herbert Ho-Ching Iu ◽  
Ni Luo ◽  
...  

This paper is concerned with the finite-time projective synchronization problem of fractional-order memristive neural networks (FMNNs) with mixed time-varying delays. Firstly, under the frame of fractional-order differential inclusion and the set-valued map, several criteria are derived to ensure finite-time projective synchronization of FMNNs. Meanwhile, three properties are established to deal with different forms of the finite-time fractional differential inequation, which greatly extend some results on estimation of settling time of FMNNs. In addition to the traditional Lyapunov function with 1-norm form in Theorem 1, a more general and flexible Lyapunov function based on p-norm is constructed in Theorem 2 to analyze the finite-time projective synchronization problem, and the estimation of settling time has been verified less conservative than previous results. Finally, numerical examples are provided to demonstrate the effectiveness of the derived theoretical results.


2021 ◽  
pp. 1-11
Author(s):  
Wenbin Jin ◽  
Wenxia Cui ◽  
Zhenjie Wang

Finite-time synchronization is concerned for the fractional-order complex-valued fuzzy cellular neural networks (FOCVFCNNs) with leakage delay and time-varying delays. Without using the usual complex-valued system decomposition method, this paper designs the different forms of the controllers by using 2-norm. And we construct the appropriate Lyapunov functional and apply inequality analytical techniques, some new sufficient conditions are obtained to ensure finite-time synchronization of the FOCVFCNNs. The upper bound of setting-time function is obtained. Finally, numerical examples are examined to illustrate the effectiveness of the analytical results.


Sign in / Sign up

Export Citation Format

Share Document