Saliency detection via integrating deep learning architecture and low-level features

2019 ◽  
Vol 352 ◽  
pp. 75-92 ◽  
Author(s):  
Jianning Chi ◽  
Chengdong Wu ◽  
Xiaosheng Yu ◽  
Hao Chu ◽  
Peng Ji
Author(s):  
M. N. Favorskaya ◽  
L. C. Jain

Introduction:Saliency detection is a fundamental task of computer vision. Its ultimate aim is to localize the objects of interest that grab human visual attention with respect to the rest of the image. A great variety of saliency models based on different approaches was developed since 1990s. In recent years, the saliency detection has become one of actively studied topic in the theory of Convolutional Neural Network (CNN). Many original decisions using CNNs were proposed for salient object detection and, even, event detection.Purpose:A detailed survey of saliency detection methods in deep learning era allows to understand the current possibilities of CNN approach for visual analysis conducted by the human eyes’ tracking and digital image processing.Results:A survey reflects the recent advances in saliency detection using CNNs. Different models available in literature, such as static and dynamic 2D CNNs for salient object detection and 3D CNNs for salient event detection are discussed in the chronological order. It is worth noting that automatic salient event detection in durable videos became possible using the recently appeared 3D CNN combining with 2D CNN for salient audio detection. Also in this article, we have presented a short description of public image and video datasets with annotated salient objects or events, as well as the often used metrics for the results’ evaluation.Practical relevance:This survey is considered as a contribution in the study of rapidly developed deep learning methods with respect to the saliency detection in the images and videos.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Hai Wang ◽  
Lei Dai ◽  
Yingfeng Cai ◽  
Long Chen ◽  
Yong Zhang

Traditional salient object detection models are divided into several classes based on low-level features and contrast between pixels. In this paper, we propose a model based on a multilevel deep pyramid (MLDP), which involves fusing multiple features on different levels. Firstly, the MLDP uses the original image as the input for a VGG16 model to extract high-level features and form an initial saliency map. Next, the MLDP further extracts high-level features to form a saliency map based on a deep pyramid. Then, the MLDP obtains the salient map fused with superpixels by extracting low-level features. After that, the MLDP applies background noise filtering to the saliency map fused with superpixels in order to filter out the interference of background noise and form a saliency map based on the foreground. Lastly, the MLDP combines the saliency map fused with the superpixels with the saliency map based on the foreground, which results in the final saliency map. The MLDP is not limited to low-level features while it fuses multiple features and achieves good results when extracting salient targets. As can be seen in our experiment section, the MLDP is better than the other 7 state-of-the-art models across three different public saliency datasets. Therefore, the MLDP has superiority and wide applicability in extraction of salient targets.


2018 ◽  
Vol 10 (11) ◽  
pp. 1768 ◽  
Author(s):  
Hui Yang ◽  
Penghai Wu ◽  
Xuedong Yao ◽  
Yanlan Wu ◽  
Biao Wang ◽  
...  

Building extraction from very high resolution (VHR) imagery plays an important role in urban planning, disaster management, navigation, updating geographic databases, and several other geospatial applications. Compared with the traditional building extraction approaches, deep learning networks have recently shown outstanding performance in this task by using both high-level and low-level feature maps. However, it is difficult to utilize different level features rationally with the present deep learning networks. To tackle this problem, a novel network based on DenseNets and the attention mechanism was proposed, called the dense-attention network (DAN). The DAN contains an encoder part and a decoder part which are separately composed of lightweight DenseNets and a spatial attention fusion module. The proposed encoder–decoder architecture can strengthen feature propagation and effectively bring higher-level feature information to suppress the low-level feature and noises. Experimental results based on public international society for photogrammetry and remote sensing (ISPRS) datasets with only red–green–blue (RGB) images demonstrated that the proposed DAN achieved a higher score (96.16% overall accuracy (OA), 92.56% F1 score, 90.56% mean intersection over union (MIOU), less training and response time and higher-quality value) when compared with other deep learning methods.


2020 ◽  
Vol 35 (21) ◽  
pp. 2050119
Author(s):  
Lev Dudko ◽  
Georgi Vorotnikov ◽  
Petr Volkov ◽  
Maxim Perfilov ◽  
Andrei Chernoded ◽  
...  

Deep learning neural network (DNN) technique is one of the most efficient and general approach of multivariate data analysis of the collider experiments. The important step of the analysis is the optimization of the input space for multivariate technique. In the paper we propose the general recipe how to form the set of low-level observables sensitive to the differences in hard scattering processes at the colliders. It is shown in the paper that without any sophisticated analysis of the kinematic properties one can achieve close to optimal performance of DNN with the proposed general set of low-level observables.


2021 ◽  
Author(s):  
Yi-Jiun Shen ◽  
En-Yu Liao ◽  
Tsung-Ming Tai ◽  
Yi-Hua Liao ◽  
Chi-Kuang Sun ◽  
...  

Author(s):  
Monika Singh ◽  
Anand Singh Singh Jalal ◽  
Ruchira Manke ◽  
Aamir Khan

Saliency detection has always been a challenging and interesting research area for researchers. The existing methodologies either focus on foreground regions or background regions of an image by computing low-level features. However, considering only low-level features did not produce worthy results. In this paper, low-level features, which are extracted using super pixels, are embodied with high-level priors. The background features are assumed as the low-level prior due to the similarity in the background areas and boundary of an image which are interconnected and have minimum distance in between them. High-level priors such as location, color, and semantic prior are incorporated with low-level prior to spotlight the salient area in the image. The experimental results illustrate that the proposed approach outperform the sate-of-the-art methods.


Author(s):  
Bo Li ◽  
Zhengxing Sun ◽  
Yuqi Guo

Image saliency detection has recently witnessed rapid progress due to deep neural networks. However, there still exist many important problems in the existing deep learning based methods. Pixel-wise convolutional neural network (CNN) methods suffer from blurry boundaries due to the convolutional and pooling operations. While region-based deep learning methods lack spatial consistency since they deal with each region independently. In this paper, we propose a novel salient object detection framework using a superpixelwise variational autoencoder (SuperVAE) network. We first use VAE to model the image background and then separate salient objects from the background through the reconstruction residuals. To better capture semantic and spatial contexts information, we also propose a perceptual loss to take advantage from deep pre-trained CNNs to train our SuperVAE network. Without the supervision of mask-level annotated data, our method generates high quality saliency results which can better preserve object boundaries and maintain the spatial consistency. Extensive experiments on five wildly-used benchmark datasets show that the proposed method achieves superior or competitive performance compared to other algorithms including the very recent state-of-the-art supervised methods.


Sign in / Sign up

Export Citation Format

Share Document