Accelerated capacity of glutamate uptake via blood elements as a possible tool of rapid remote conditioning mediated tissue protection

2021 ◽  
Vol 142 ◽  
pp. 104927
Author(s):  
Petra Bonova ◽  
Jana Jachova ◽  
Miroslava Nemethova ◽  
Martin Bona ◽  
Patricia Kollarova ◽  
...  
2002 ◽  
Vol 2 (7) ◽  
pp. 593-603 ◽  
Author(s):  
Jonathan Levenson ◽  
Edwin Weeber ◽  
J. Sweatt ◽  
Arnold Eskin

1975 ◽  
Author(s):  
H. Rieger ◽  
H. Schmid-Schönbein

Even after pseudopodia formation platelets - unlike all other known formed blood elements - remain dispersed in stasis and creeping flow and become aggregated only in the presence of a minimum amount of shearing. The “rheoaggregometer” (Rieger et al., Pflüger’s Archiv, 343, R 33, 1973) allows to measure the minimum shear rates necessary for platelet aggregation (PA), as well as the initial rate and the maximum extent of PA in citrated PRP.PA is quantified photometrically as a function of variable shear rates. The initial rate of PA steadily increases with increasing shear rates up to 460 sec-1. However, the maximal extent of PA (indicating the mechanical integrity of formed aggregates) saturates at about 35 sec-1 and then decreases because of a destruction of formed aggregates and of prevention of further PA. The aggregability of the platelets, as reflected by various degrees of shape changes, is enhanced by a drop of temperature and a rise in pH as well as by the so called aggregating agents (e.g. epinephrine 10-6 up to 10-9 M/l) : consecutively lower shear rates (lower effects of collision) are necessary to induce PA. In citrated PRP stable platelet aggregates are produced only within a defined range of shear rates. Platelet aggregability and aggregate stability are independent variables influenced by different experimental conditions.


ASN NEURO ◽  
2020 ◽  
Vol 12 ◽  
pp. 175909142097960
Author(s):  
Andrew S. Lapato ◽  
Sarah M. Thompson ◽  
Karen Parra ◽  
Seema K. Tiwari-Woodruff

While seizure disorders are more prevalent among multiple sclerosis (MS) patients than the population overall and prognosticate earlier death & disability, their etiology remains unclear. Translational data indicate perturbed expression of astrocytic molecules contributing to homeostatic neuronal excitability, including water channels (AQP4) and synaptic glutamate transporters (EAAT2), in a mouse model of MS with seizures (MS+S). However, astrocytes in MS+S have not been examined. To assess the translational relevance of astrocyte dysfunction observed in a mouse model of MS+S, demyelinated lesion burden, astrogliosis, and astrocytic biomarkers (AQP4/EAAT2/ connexin-CX43) were evaluated by immunohistochemistry in postmortem hippocampi from MS & MS+S donors. Lesion burden was comparable in MS & MS+S cohorts, but astrogliosis was elevated in MS+S CA1 with a concomitant decrease in EAAT2 signal intensity. AQP4 signal declined in MS+S CA1 & CA3 with a loss of perivascular AQP4 in CA1. CX43 expression was increased in CA3. Together, these data suggest that hippocampal astrocytes from MS+S patients display regional differences in expression of molecules associated with glutamate buffering and water homeostasis that could exacerbate neuronal hyperexcitability. Importantly, mislocalization of CA1 perivascular AQP4 seen in MS+S is analogous to epileptic hippocampi without a history of MS, suggesting convergent pathophysiology. Furthermore, as neuropathology was concentrated in MS+S CA1, future study is warranted to determine the pathophysiology driving regional differences in glial function in the context of seizures during demyelinating disease.


Glia ◽  
1991 ◽  
Vol 4 (3) ◽  
pp. 293-304 ◽  
Author(s):  
Berenike Flott ◽  
Wilfried Seifert

Science ◽  
1973 ◽  
Vol 181 (4102) ◽  
pp. 860-862 ◽  
Author(s):  
R. P. Shank ◽  
J. T. Whiten ◽  
C. F. Baxter
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document